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ABSTRACT
Estimation of the phase of a sinusoid is an important prob-
lem in signal processing. The usual maximum likelihood
estimator is biased and so can produce poor results, espe-
cially at low signal-to-noise ratios and/or short data records.
It is proven that no unbiased estimator exists; based on the
proof, several means of obtaining estimators with less bias
than the maximum likelihood estimator are proposed.

1. INTRODUCTION

The phase of a sinusoid embedded in white Gaussian noise
is a well studied problem. It is usually solved by employ-
ing the maximum likelihood estimator (MLE) [1]. Unfortu-
nately, the MLE is biased and so can lead to poor results at
low signal-to-noise ratios and/or short data records. Prob-
lems such as cycle skipping in phase-locked loops [2] are
directly attributable to this bias. Other practical problems of
interest, in addition to communications, are in frequency es-
timation via fast methods [3] and bearing estimation in line
arrays [4]. All of these encounter difficulties due to a “phase
wraparound”, which is equivalently characterized as an es-
timation bias error. In this paper we investigate whether
an unbiased phase estimator exists and if not, the extent to
which a “nearly unbiased” estimator can be implemented.

A desirable property of a statistical point estimator of a
parameter θ is that on average it yields the true value of the
parameter. Specifically, given a random sample x =
(x0, x1, . . . , xN−1), where p(x; θ), θ ∈ Θ is the probabil-
ity density function (pdf) of x, then the statistical estimator
δ(x) of the parameter θ is said to be unbiased if the expected
value of δ(x) produces θ; namely

E δ(x) =
∫

δ(x)p(x; θ)dx = θ, θ ∈ Θ. (1)

A number of well known techniques are available to
solve integral equations in the form of (1), such as differ-
entiating or using Fourier, Laplace or Mellin integral trans-
forms [5]. An alternate approach used here is to determine

the eigenvalues and eigenfunctions of the integral operator
and solve (1) via a series solution [6].

2. PROBLEM STATEMENT

We consider the estimation of the phase θ of a sinusoid em-
bedded in noise or

x[n] = A cos[ωon + θ] + w[n], n = 0, 1, . . . , N − 1

where w[n] is white Gaussian noise with unknown variance
σ2; furthermore, the amplitude A is considered unknown
while the frequency ωo is assumed to be known. All the
information regarding the parameter θ is summarized by the
jointly sufficient statistics given by [1]:

T1 =
N−1∑
n=0

x[n] cos[ωon],

T2 =
N−1∑
n=0

x[n] sin[ωon].

Consequently, all inference can be based on the joint
pdf of T = (T1, T2) and is given by:

p(T; θ) =
h(θ)

2πσ2|det Σ| 12 exp
(

A

σ2
(T1 cos[θ] − T2 sin[θ])

)

× exp
(
− 1

2σ2
TT Σ−1T

)

where

h(θ) = exp

(
− A2

2σ2

N−1∑
n=0

cos2[ωon + θ]

)
,
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and

Σ =

⎡
⎢⎢⎢⎢⎣

N−1∑
n=0

cos2[nωo]
N−1∑
n=0

cos[nωo] sin[nωo]

N−1∑
n=0

cos[nωo] sin[nωo]
N−1∑
n=0

sin2[nωo]

⎤
⎥⎥⎥⎥⎦

is the covariance matrix.

We seek an unbiased estimator δ(T) of θ; namely

∫ ∞

−∞

∫ ∞

−∞
δ(T)p(T; θ)dT = θ, −π ≤ θ ≤ π. (2)

For mathematical simplicity, it is assumed that ωo = 2πk
N ;

consequently, Σ = N
2 I, |detΣ| 12 = N

2 and
and therefore

p(T; θ) =
h(θ)

πσ2N
exp

(
A

σ2
(T1 cos[θ] − T2 sin[θ])

)

× exp
(
− 1

Nσ2
(T 2

1 + T 2
2 )

)
, (3)

with

h(θ) = exp
(
−A2N

4σ2

)
.

Transforming (3) to polar coordinates via T1 = ρ cos[φ] and
T2 = −ρ sin[φ], where the latter minus sign has been intro-
duced in order to subsequently obtain a symmetric kernel,
yields

p(ρ, φ; θ) =
h(θ)ρ
πσ2N

exp
(

Aρ

σ2
cos(θ − φ) − ρ2

Nσ2

)
. (4)

Furthermore, it is assumed that the estimator is scale invari-
ant; namely, the same estimate is obtained if T is multiplied
by any constant c > 0. Consequently, δ(ρ, φ) will depend
only on φ. Under this invariance assumption, the polar form
of (2) is given by the following integral equation:

∫ π

−π

δ(φ)K(θ − φ)dφ = θ, −π ≤ θ ≤ π (5)

where

K(θ − φ) =
h(θ)

Nπσ2

∫ ∞

0

ρ exp
(

Aρ

σ2
cos(θ − φ) − ρ2

Nσ2

)
dρ

is a 2π periodic, symmetric kernel. Furthermore using [8,
3.462.5] the kernel can be expressed in terms of Φ(x), the
standard error function [8, 8.250.1]:

K(θ − φ) =
h(θ)
π

(
1
2

+
√

π b

4
exp

(
b2

4

)(
1 + Φ

(
b

2

)))

where

b =
A
√

N

σ
cos(θ − φ).

3. INTEGRAL EQUATIONS

Integral equations are equations in which an unknown func-
tion appears under the integral sign. The relevant form con-
sidered here is the Fredholm equation of the first kind [7]
with a 2π periodic, symmetric kernel K(x, t); namely,

f(x) =
∫ π

−π

K(x − t)g(t)dt, K(x, t) = K(t, x) (6)

where f(x) is given and g(x) is an unknown function. A
basic result [6] is that given a continuous real and symmet-
ric kernel and a continuous f(x), then a solution to (6) ex-
ists only if the given function f(x) can be expanded in se-
ries whose basis functions are orthonormal eigenfunctions,
Ψk(x) of the kernel K(x − t); namely,

f(x) =
∞∑

k=−∞
fkΨk(x) (7)

with coefficients

fk =
∫ π

−π

f(t)Ψk(t)dt .

Next, expanding the unknown function g(x) in a Fourier
series in terms of Ψk(x); namely,

g(x) =
∞∑

k=−∞
gkΨk(x)

and substituting into (6) we have that

∫ π

−π

K(x − t)g(t)dt =
∫ π

−π

K(x − t)
∞∑

k=−∞
gkΨk(t)dt

=
∞∑

k=−∞
gk

∫ π

−π

K(x − t)Ψk(t)dt

=
∞∑

k=−∞
gkλkΨk(x) (8)

II - 494

➡ ➡



where

λk =
∫ π

−π

K(x − t)Ψk(t)dt.

Examples of the kernel K(t) for values of β = A2N
σ2 are

shown in Figure 1. Equating (7) with (8), it can be seen that
the solution to (6) can be expressed as a series in terms of
the Fourier series coefficients of f(x) and the eigenvalues
and eigenfunctions of the kernel [6]; namely

g(x) =
∞∑

k=−∞

fk

λk
Ψk(x) (9)

provided

∞∑
k=−∞

∣∣∣∣ fk

λk

∣∣∣∣
2

< ∞.
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Fig. 1. Integral equation kernel.

We note that the kernel is an analytic and periodic function
of θ; consequently, this kernel can generate only analytic
and periodic functions of θ, regardless of δ(φ). However,
the desired right hand side (RHS) of (5); namely θ, is an-
alytic but not periodic. Conversely, if RHS is periodically
extended, that extension is not analytic. Consequently, no
exact solution exists. This is rigorously proven by demon-
strating that a series solution does not exist.

It is easily shown [7] that the eigenfunctions of K(θ−φ)
are complex exponentials, exp(ıkφ) and consequently the
eigenvalues are

λk =
∫ π

−π

K(t) exp(−ıkt)dt .

Furthermore, the complex Fourier series representation of θ
is

θ =
∞∑

k=−∞
θk exp(ıkθ)

where the complex Fourier coefficients θk satisfy the rela-
tionship

θk =
1
2π

∫ π

−π

t exp(−ıkt)dt

=

{
ı(−1)k

k k �= 0
0 k = 0 .

Therefore from (9), the series expression for the unbiased
estimate of phase is given by

δ(φ) =
∞∑

k=−∞

θk

λk
exp(ıkφ) (10)

provided
∑∞

k=−∞
∣∣∣ θk

λk

∣∣∣2 < ∞.

The Fourier coefficients θk explicitly decay as 1/k. In
general, the rate of decay of Fourier coefficients is related to
the smoothness of the function [9]. In particular, the deriva-
tives of the kernel with respect to θ exist for all orders and
it is easily shown that

|λk| =
1

km

∣∣∣∣
∫ π

−π

dmK(t)
dtm

exp(ıkt)dt

∣∣∣∣
≤ 1

km

∫ π

−π

∣∣∣∣dmK(t)
dtm

∣∣∣∣ exp(ıkt)dt .

This implies that λk decays faster than 1/k; consequently

∞∑
k=−∞

∣∣∣∣ fk

λk

∣∣∣∣
2

→ ∞

and therefore no unbiased estimate of phase δ(φ) exists.

4. MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood estimate of sinusoidal phase is
given by [1]

θ̂ = − arctan
(

T2

T1

)
. (11)
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Applying the expectation operator we obtain

E θ̂ =
∫ ∞

−∞

∫ ∞

−∞
θ̂p(T1, T2; θ)dT1dT2

=
∫ ∞

−∞

∫ ∞

−∞
− arctan

(
T2

T1

)
p(T1, T2; θ)dT1dT2 .

Transforming this expression to polar coordinates via T1 =
ρ cos[φ] and T2 = −ρ sin(φ) yields

E θ̂ =
∫ π

−π

∫ ∞

0

φp(ρ, φ; θ)dρ dφ

=
∫ π

−π

φK(θ − φ)dφ . (12)

Expanding φ in terms of the eigenfunctions of K(θ − φ);
namely, a Fourier series and substituting into (12):

E θ̂ =
∫ π

−π

∞∑
k=−∞

φk exp(ıkφ)K(θ − φ)dφ

=
∞∑

k=−∞
φk

∫ π

−π

exp(ıkφ)K(θ − φ)dφ

=
∞∑

k=−∞
θkλk exp(ıkθ) (13)

where we have used the fact that φk = θk.
It is seen that the expected value of the MLE depends on

the reciprocal of the eigenvalues of δ(φ) and is the source of
the MLE’s bias. Examples of the average MLE, illustrating
this bias, are shown in Figure 2. Future work will consider
estimators of the form

∆(φ) =
∞∑

k=−∞

wkθk

λk
exp(ıkφ),

where the weights wk are the Fourier coefficients of a win-
dow function w. The weights are chosen such that the es-
timator obtained from the convolution of w with θ has less
bias than the MLE, at the possible expense of variance.

5. CONCLUSIONS

In this paper we have shown that an unbiased estimate of
the phase of a sinsusoid embedded in white Gaussian noise
does not exist. The functional form used to obtain this result
was compared to the average MLE and reveals that the bias
of the MLE is induced by the eigenvalues of a smoothing
kernel.
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Fig. 2. Expected maximum likelihood estimate.
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