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ABSTRACT

This paper addresses the issue of quantifying the frequency
domain accuracy of ARMA spectral estimates as dictated
by the Cramér–Rao Lower Bound (CRLB). Classical work
in this area has led to expressions that are asymptotically
exact as both data length and model order tend to infinity,
although they are commonly used in finite model order and
finite data length settings as approximations. More recent
work has established quantifications which, for AR models,
are exact for finite model order. By employing new analysis
methods based on rational orthonormal parameterisations,
together with the ideas of reproducing kernel Hilbert spaces,
this paper develops quantifications that extend this previous
work by being exact for finite model order in all of the AR,
MA and ARMA system cases. These quantifications, via
their explicit dependence on poles and zeros of the underly-
ing spectral factor, reveal certain fundamental aspects of the
accuracy achievable by spectral estimates of ARMA pro-
cesses.

1. INTRODUCTION

In a wide variety of applications including adaptive filtering,
acoustics, econometrics, array processing, radar and speech
processing it is necessary to estimate the correlation struc-
ture of a signal that can be modelled as a stationary stochas-
tic process {yt}.

This correlation structure is completely described by the
spectral density Φy(ω) of the process, and in turn this is
often of interest in its own right. While there is a very
large variety of methods available to estimate such a spec-
tral density [1, 2, 3, 4], when it has a finite order rational
form, the approach of using an ARMA model structure to-
gether with a Maximum–Likelihood criterion is well known
to offer optimal accuracy, in the sense that the Cramér–
Rao lower bound (CRLB) on parameter space variability is
asymptotically achieved as the data length tends to infinity.

Via a first order Taylor series argument, this also implies
that the associated estimate of the spectral density Φy(ω)
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also asymptotically achieves its Cramér–Rao bound. This
opens the question of quantifying what this bound on the
estimate of Φy(ω) is, both in order to inform what problem
aspects might limit or enhance estimation accuracy, and also
to actually quantify that accuracy.

Recognising this importance, several prior works (eg.
[5, 6]) have sought to find expressions for it. A central mo-
tif of those contributions has been to simplify what appear
to be quite complex expressions by a strategy of allowing
the model order to tend to infinity, and then using the en-
suing asymptotic in model order result as an approximate
quantification applying for finite model order.

This paper progresses beyond this work by establish-
ing quantifications that are exact for finite model order and
hence a more accurate than pre-existing expressions which
were only approximate for finite model order. In particu-
lar, the work here establishes that with Φy(ω, θ̂N) denoting
an estimate of the spectrum Φy(ω) based on an intervening
estimate θ̂N of the ARMA parameters, then

lim
N→∞

NVar

{
Φy(ω, θ̂N )

Φy(ω)

}
= 2

[
2m−1∑
k=0

1 − |ξk|2
|ejω − ξk|2 +

Re

{
2m−1∑
k=0

1 − ξ2
k

(ejω − ξk)2

k−1∏
�=0

(
1 − ξ�e

jω

ejω − ξ�

)2
}]

. (1)

Here N is the length of the data record used to generate the
parameter estimate θ̂N , and {ξ0, · · · , ξ2m−1} are the poles
and zeros of the m’th order ARMA representation which
here (but not later) are assumed all real valued and also here
(but not later) it has been assumed that the minimal one-step
ahead prediction error variance σ2 is known.

This establishes, for example, that the spectral estimate
will be less accurate at frequencies close to any poles or
zeros of the underlying ARMA process. As well, it estab-
lishes a ‘waterbed’ effect, in that since the integral of the
right hand side of (1) over ω ∈ [−π, π] equals 8mπ, then
any increase in relative spectral estimation error at certain
frequencies (eg. near poles or zeros close to the unit circle)
must be balanced by commensurate decreases at other fre-
quencies.
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It should be emphasised that there is a fundamental dif-
ference between the concentration in this paper on the vari-
ability of functions of the parameter estimates and many
well known previous works that have addressed the vari-
ability of the parameters themselves, and which are not the
focus of this contribution.

For example [2, Appendix B.5], [1, pp293-296] detail
how the CRLB on ARMA parameter estimates may be re-
liably computed, and then indicate how the CRLB of func-
tions of the parameters may then be numerically evaluated
via computation of certain quadratic forms.

The paper here extends this pre-existing work to show
how closed form expressions for these quadratic forms may
be derived. Apart from adding new insight into the paramet-
ric spectral estimation problem, the closed forms presented
here also provides alternative means for reliably evaluating
the associated CRLB.

2. PROBLEM FORMULATION AND
BACKGROUND

Suppose that {yt} is a wide sense stationary and zero mean
stochastic process with spectral density Φy(ω) which is as-
sumed to be bounded away from zero so that the Paley–
Wiener condition is satisfied, and hence {yt} is a regular
process that possesses a Wold decomposition devoid of de-
terministic component as follows

yt = et +
∞∑

n=1

hnet−n. (2)

Here {et} is a zero mean i.i.d. process of variance E
{
e2

t

}
=

σ2 and the spectral factor

H(z) = 1 +
∞∑

n=1

hnz−n (3)

and its inverse H−1(z) are both analytic in |z| ≥ 1. This
permits an alternative expression for the power spectral den-
sity Φy(ω) of {yt} in terms of this spectral factor H(z) as

Φy(ω) = σ2|H(ejω)|2.

Now, as mentioned in the introduction, it is often of inter-
est to estimate this spectral density from observations of
a realisation of {yt}. Considering that the class of ratio-
nal |H(ejω)|2 are dense within the space of all continuous
ones (with respect to the supremum norm) then a common
strategy for estimating Φy(ω) is to express (2) according
to the so-called Auto-Regressive Moving Average (ARMA)
model structure [7, 8, 9]

yt = H(q, θ)et =
C(q, θ)
D(q, θ)

et (4)

where the numerator and denominator polynomials are of
the form

D(q, θ) = qm + dm−1q
m−1 + · · · + d1q + d0, (5)

C(q, θ) = qm + cm−1q
m−1 + · · · + c1q + c0 (6)

and the parameter vector θ ∈ Rn (with n = 2m) is defined
as the vector of real valued co-efficients

θ = [d0, c0, d1, c1, · · · , dm−1, cm−1]T .

There are two important sub-classes of this model struc-
ture; the Autoregressive (AR) and Moving Average (MA)
cases which occur when (respectively) C(q, θ) = qm and
D(q, θ) = qm are specified.

For all these AR, MA and ARMA cases, the mean-square
optimal one-step ahead predictor ŷt|t−1(θ) based on the model
structure (4) is [7]

ŷt|t−1(θ) =
[
1 − H−1(q, θ)

]
yt

with associated prediction error

εt(θ) � yt − ŷt|t−1(θ) = H−1(q, θ)yt. (7)

Therefore, if {et} has a Gaussian distribution, then the Max-
imum Likelihood estimates θ̂N and σ̂2

N of θ and σ2 are
given as

θ̂N � argmin
θ∈R

1
N

N∑
t=1

ε2
t (θ), σ̂2

N =
1
N

N∑
t=1

ε2
t (θ̂N ).

(8)
This then leads to an estimate H(z, θ̂N) of the spectral fac-
tor H(z) in (3) and thereby also of the spectral density; viz.

Φy(ω, θ̂N ) = σ̂2
N

∣∣∣H(ejω, θ̂N )
∣∣∣2 . (9)

It is known that this Maximum–Likelihood approach leads

to an estimate variability Var
{
Φy(ω, θ̂N )

}
that asymptot-

ically in the data length achieves the Cramér–Rao lower
bound [7, 9, 8]. The focus of this paper is to provide an
explicit formula for this bound, since it also quantifies the
asymptotic variability of the spectral estimate (9) formed
via (8) for cases in which {et} is not Gaussian [10].

The importance of this evaluation of the CRLB was first
recognised in [5] which established that for AR model struc-
tures

lim
m→∞ lim

N→∞
N

m
Var

{
Φy(ω, θ̂N )

}
= 2Φ2

y(ω), ω �= 0, π

(10)
which suggests the approximate quantification

Var
{
Φy(ω, θ̂N )

}
≈ 2m

N
· Φ2

y(ω), ω �= 0, π. (11)
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Later, the result (10) (and hence (11)) was shown to also be
applicable in the case of ARMA modelling [6].

The motivation for allowing the model order to tend to
infinity in (10) is to facilitate the derivation of a simple ex-
pression, such as the right hand side of (10). The clear draw-
back of this strategy is that it requires approximate conver-
gence in (10) to have occurred in order for the ensuing quan-
tification (11) to be accurate, and it is difficult to ensure that
this convergence holds in practise.

The contribution of this paper is to present a new re-
producing kernel based analysis method, which quantifies

the CRLB on Var
{

Φy(ω, θ̂N)
}

in closed form and with-

out requiring that m → ∞, while also addressing all of the
parametric AR, MA and ARMA modelling cases.

3. MAIN RESULT

The main result of this paper is the following closed form
quantification for the asymptotic (in data length N ) variabil-
ity of the parametric spectral density estimate (9).

Theorem 3.1. Suppose that θ̂N is calculated via (4)–(8)
using the m’th order ARMA model structure (4), and that
the data {yt} has true underlying spectral factor of H(z) =
C(z)/D(z) of minimal order equal to m. Suppose further
that the zeros {ξk} defined by

C(z)D(z) = (z − ξ0)(z − ξ1) · · · (z − ξ2m−1) (12)

are all strictly within the open unit disk D, and that {et}
satisfies the conditions

E
{
e2

t

}
= σ2 < ∞, E

{|et|4+ε
}

< ∞ (13)

for some ε > 0. Then

√
N

[
Φy(ω, θ̂N ) − Φy(ω)
Φy(λ, θ̂N ) − Φy(λ)

]
D−→ N (0, Σ(ω, λ))

as N → ∞ where

Σ(ω, λ) =
[ |H(ejω)|2 0

0 |H(ejλ)|2
]
×

[
µI2 + 2σ4Γ(ω, λ)

] [ |H(ejω)|2 0
0 |H(ejλ)|2

]
Γ(ω, λ)�Re

{[
ϕm(ω, ω)+ψm(ω, ω) ϕm(λ, ω)+ψm(λ, ω)
ϕm(λ, ω)+ψm(λ, ω) ϕm(λ, λ)+ψm(λ, λ)

]}
where

ϕm(λ, ω) =
2m−1∑
k=0

1 − |ξk|2
(ejλ − ξk)(e−jω − ξk)

×

k−1∏
�=0

(
1 − ejλξ�

ejλ − ξ�

) (
1 − e−jωξ�

e−jω − ξ�

)
(14)

ψm(λ, ω) = ϕm−ρ(λ,−ω) +
ρ−1∑
τ=0

ζτ (ejλ)ζτ (ejω) (15)

with

ζτ (z) �
√

1 − |ξr(τ)|4(z − α)

(z − ξr(τ))(z − ξr(τ))

r(τ)−1∏
�=0

(
1 − ξ�z

z − ξ�

)
(16)

r(τ)�2(m−ρ+τ), α�
ξr(τ)+ξr(τ)−

√
(1−ξ2

r(τ))(1−ξ
2

r(τ))

1 + |ξr(τ)|2 .

(17)
In (15)– (17) it has been assumed (without loss of general-
ity) that the zeros defined by (12) are arranged so that the
first 2(m − ρ) of them are purely real valued, and the re-
maining 2ρ then occur in complex conjugate pairs.

The result also holds for the AR and MA cases with the
following modifications:

1. The model order m can be greater than an underlying
true one �;

2. The substitutions C(z) = 1 and D(z) = 1 in (12) are
made for the AR or MA cases (respectively);

3. The zeros {ξ�+1, · · · , ξm} in (12) are set to zero.

The most important consequence of this theorem is that
it establishes the result

lim
N→∞

NVar

{
Φy(ω, θ̂N )

Φy(ω)

}
=

µ

σ4
+2Re {ϕm(ω, ω)+ψm(ω, ω)} .

(18)
The first key point about (18) is that, via the formulae (14)-
(15), it is a closed form expression for the asymptotic in
N variability for all of the cases of AR, MA and ARMA
parametric spectral estimates Φy(ω, θ̂N ).

The second key point about this closed form expression
(18) is that, again in contrast to previous work such as [5, 7],
it is not derived via an argument that is asymptotic in the
model order m. Therefore, the approximation this paper
now proposes for the practical case of finite data length N
and finite model order settings of

Var

{
Φy(ω, θ̂N )

Φy(ω)

}
≈ 1

N

[ µ

σ4
+2Re{ϕm(ω, ω)+ψm(ω, ω)}

]
(19)

is likely to be far more accurate that ones such as (11) de-
rived from previous results such as (10) which require m →
∞. This is illustrated via simulation example in the follow-
ing section.

The third key point is that the closed form expressions
(18), (19) highlight that because all the denominators in
(14), (15) are small when ejω is close to any of the {ξk},
then the relative estimation error is likely to be larger at
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those frequencies near both the poles and zeros of the un-
derlying spectral factor H(z). Furthermore, this relative es-
timation error is likely to be larger when those poles or zeros
are very close to the unit circle, then when they are not.

Finally, returning to (18) which applies for any real or
complex value of {ξk}, it can be used to establish that the
average relative estimation error over all frequencies is given
as

lim
N→∞

N

2π

∫ π

−π

Var

{
Φy(ω, θ̂N )

Φy(ω)

}
dω =

µ

σ4
+ 4m. (20)

This illustrates a “waterbed effect” in that, although as just
discussed, the expression (18) indicates increased relative
error near poles and zeros, with increased effect according
to distance from the unit circle, these effects must be bal-
anced by a commensurate decrease in relative error at other
frequencies, since the average (over frequency) relative er-
ror depends only on the model order.

4. SIMULATION EXAMPLES

In order to provide concrete illustration of the results pre-
sented here, consider the case of a true ARMA system with
spectral factor

H(z) =
z3 − 1.9235z2 + 1.5910z − 0.5203
z3 − 1.9464z2 + 1.5155z − 0.5368

(21)

and suppose that the innovations driving this are Gaussian
distributed with variance σ2 = 1. Then according to (18),
the variability of a Maximum–Likelihoodestimate of the as-
sociated spectral density Φy(ω) should be quantifiable via
the CRLB for this estimation problem according to (19).
This can be comparedwith the previous asymptotic results [5,
6], which are asymptotic in both data length N and model
order m according to (10), and which have led to the pre-
existing approximation

Var
{

Φy(ω, θ̂N )
}
≈ 1

N
Φ2

y(ω)
[ µ

σ4
+ 2m

]
. (22)

Note that the first term within accounts for the possibility of
estimating the value of σ2, while previous work leading to
(10) assumed this was known,

With this in mind, the new expression (19), whose accu-
racy does not depend on m is essentially different from (22)
according to the ϕm and ψm terms, which are determined
by the zeros of C(z) and D(z) in H(z) = C(z)/D(z),
which in this case are given as

{ξk} =
{
0.7165, 0.9429, 0.852e±j0.784, 0.7545e±j0.8433

}
.

(23)
The utility of the ensuing new quantification (19) is illus-
trated in figure 1, where it is profiled as a dashed line to-

gether with the ‘true’ variability Var
{
Φy(ω, θ̂N )

}
which
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Fig. 1. Variability of Φy(ejω, θ̂N ). The solid line is the true
variability, as estimated via averaging over Monte–Carlo
trial, the dashed line exactly matching it is the new quantifi-
cation (19) of this paper, while the dash-dot line is the pre-
existing quantification (22) which depends on an asymptotic
in model order argument.

is estimated in a Monte–Carlo fashion by computing the
sample variance over 1000 simulation experiments, each of
which involves N = 10000 data points. Clearly, the agree-
ment is excellent, and certainly superior to the pre-existing
quantification (22), which is shown as the dash-dot line.
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