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ABSTRACT

A new frequency domain algorithm for multi-component
harmonic retrieval has been developed recently. The method
is based on using Discrete Fourier Transform (DFT) data
and enables the user to select frequency sub-bands within
which the frequencies of the harmonics of interest are known
to reside. The technique provides a very good attenuation
of colored noise and other disturbances residing outside the
frequency band of interest. This paper presents a consis-
tency analysis of the subspace based estimation algorithm.
The analysis provides sufficient conditions for consistency
of the sinusoidal frequency estimates in terms of required
number of DFT data. A small numerical example is also
presented comparing the new approach with the well known
ESPRIT method. The result clearly indicates that the method
has a large potential.

1. INTRODUCTION

The number of applications for estimating frequencies of
sinusoids is great and as a result, the research field is old,
popular and to a certain degree mature. A large number
of algorithms have been developed for this problem. Due
to various requirements such as frequency resolution, com-
putational complexity and data quality, the preferable algo-
rithm may vary. A special family of frequency estimation
methods which has been studied thoroughly are subspace
based methods. These have been proven to yield consistent
estimates under certain conditions [1, 2, 3, 4]. In this paper
we are studying consistency properties for a recently pro-
posed algorithm [5]. This algorithm is here referred to as
F-ESPRIT, due to its similarities to the ESPRIT algorithm
derived in [3] and since it uses frequency domain data.

The classical problem we are studying is the estimation
of n harmonic components in signal models of the type

y(t) =
n∑

k=1

αke(σk+iωk)t, (1)

where y(t) ∈ C
m is a measured signal for t = 0, .., N −

1. Other than the signal frequencies, ωk ∈ R, estimations
of damping factors, σk ∈ R, and gains, αk ∈ C

m, are
also sought for. The analysis will be based on the following
assumption on the signal parameters:

Assumption 1
The complex frequencies λk � σk + iωk are all distinct and
∀k, αk �= 0 and ωk ∈ (−π, π).

This paper is divided into four sections. Section 2 shortly
reviews the derivation of the F-ESPRIT estimation method
and introduces the notation. After that follows the main
contribution which is conditions for consistency of the fre-
quency estimates. In the last section a numerical example is
presented.

2. F-ESPRIT

The idea of F-ESPRIT is to incorporate a-priori information
about frequency intervals in which the unknown frequen-
cies are expected to reside. Using the DFT the sampled
data is converted to the frequency domain. Only DFT data
in specified frequency intervals are used in the estimation.
Disturbances outside the frequency band are then naturally
suppressed, since only leakage into the interval affects the
estimates. The method has successfully been used for anal-
ysis of electromagnetic time domain simulation data [6, 7].

First the time domain model is written in state space
form.

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t),
(2)

with the following matrix notation

A = diag[eλ1 , eλ2 , · · · , eλn ] ∈ C
n×n (3)

C = [α1 α2 · · · αn] ∈ C
m×n (4)

x0 = [1 1 · · · 1]T ∈ R
n. (5)
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The extra signal u(t) and a particular choice of the B matrix
defined by

u(t) �
{

1, t = kN − 1, k = 1, 2, · · ·
0, otherwise

(6)

B � (I − AN )x0. (7)

makes the state vector x(t) an N-periodic sequence, i.e.,
x(t + N) = x(t). It should be noted that in the observed
interval t = 0, · · · , N − 1, the two model descriptions (1)
and (2) are identical. A frequency domain equivalent model
is retrieved with the DFT, which is defined by

xk � DFT{x(t)}k �
N−1∑
t=0

x(t)W kt
N �

N−1∑
t=0

x(t)ej 2πk
N t.

(8)
A known property of the Fourier Transform is that a time
shift corresponds to a phase shift in the frequency domain.
For the DFT, that only holds if the signal is periodic and the
measured signal contains an exact multiple of the period.
The periodicity of x(t) now results in DFT{x(t + 1)}k =
W k

Nxk and a frequency domain equivalent of model (2)
takes the form

W k
Nxk = Axk + Buk

yk = Cxk,
(9)

where yk � DFT{y(t)}k and uk � DFT{u(t)}k = W k
N .

From here, an expression is sought which enables subspace
based estimation. We use equation (9) to, for DFT fre-
quency k, form the vector relation

Yk = Osxk + Γsuk (10)

where,

Yk �

⎡
⎢⎢⎢⎢⎢⎣

yk

W k
Nyk

W 2k
N yk

...

W
(s−1)k
N yk

⎤
⎥⎥⎥⎥⎥⎦

, uk �

⎡
⎢⎢⎢⎢⎢⎣

W k
N

W 2k
N

W 3k
N
...

W sk
N

⎤
⎥⎥⎥⎥⎥⎦

, (11)

Os �

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAs−1

⎤
⎥⎥⎥⎥⎥⎦

(12)

and

Γs �

⎡
⎢⎢⎢⎢⎢⎢⎣

0
CB 0

CAB
. . .

. . .
. . .

...
. . .

CAs−2B CAs−3B · · · CB 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13)

The parameter s is an auxiliary parameter in subspace meth-
ods and decides the number of rows used in the matrices
in equation (10). Its influence on the estimates is not dis-
cussed in this article, it must however be chosen larger than
the number of harmonics, n.

Now a size M subset of the frequencies on the DFT grid
is picked out. These frequency indices are denoted by ki and
are used to form the data matrices

Y � [Yk1 Yk2 · · · YkM
] (14)

U � [uk1 uk2 · · · ukM
] (15)

X � [xk1 xk2 · · · xkM ]. (16)

The signal model is now written as a matrix relation

Y = OsX + ΓsU, (17)

which forms the basic subspace equation with a structure
common for many subspace identification methods [1]. The
first term on the right side contains all the desirable informa-
tion and by construction has a rank equal to n, the number
of signal components. The second term is removed by a
multiplication from the right by a projection matrix defined
as

Π⊥ = I − U∗(UU∗)−1U. (18)

The resulting equation from which the frequencies and am-
plitudes can be retrieved, with e.g. Kung’s algorithm [4],
is

YΠ⊥ = OsXΠ⊥. (19)

The estimation of the frequencies will be consistent if the
resulting right hand term does not lose any rank by the mul-
tiplication of the projection matrix [8, 4, 3, 1]. This will be
the topic of the next section.

3. ANALYSIS

The following section contains the main contribution of the
paper. The exact conditions which ensure that the F-ESPRIT
method consistently can identify the signal parameters are
given in the result below.

Theorem 1
Let Assumption 1 hold and let {ki, i = 0, ..., M − 1} be
a subset of the index set {0, ..., N − 1}, where M is the
number of frequency domain data and where yki �= 0 for
at least n of the indices ki. When the parameter s is cho-
sen such that M ≥ n + s and s > n, the estimates of the
parameters αk, σk and ωk given by F-ESPRIT [5] will be
consistent.

Proof: The only part of the algorithm that needs to be exam-
ined is the influence of the projection matrix Π⊥ on the rank
of OsXΠ⊥. First, Assumption 1 together with yki �= 0 for
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at least n indices imply that X has full rank n. To retrieve
the parameters, the projection Π⊥ must not cancel any part
of the range space of X. This cancellation would only occur
if and only if the rows of U and X are linearly dependent or

if the matrix Υ =
[

U
X

]
is rank deficient. The matrix Υ

is rank deficient if and only if there exists a vector

[a1 · · · as b1 · · · bn] =
[
aT bT

] �= 0, (20)

such that [
aT bT

] [
U
X

]
= 0. (21)

Let the A and B matrices in (9) be arranged into two dis-
joint sets corresponding to the p complex frequencies on the
DFT grid, i.e., eλq = W

lq
N , q = 1, · · · , p, and the ones off

the grid. Note that the case p > 0 corresponds to a thin sub-
set of the signal model set.

A =
[

A1 0
0 A2

]
, B =

[
B1

B2

]
(22)

Here A1 and B1 corresponds to frequencies off the DFT-
grid and A2 and B2 on the grid. Note that B2 = 0 since
A2

N = I. The matrix X(z) now takes the form

X(z) =
[

X1(z)
X2(z)

]

=
[

(zI − A1)−1B1z
X2(z)

]
. (23)

Here the matrix X2(z) is only nonzero for z = W
lq
N and

can be written as

X2(z) = N

⎡
⎢⎣

δ(z − W l1
N )

...
δ(z − W

lp
N )

⎤
⎥⎦ (24)

The function δ(x) is Kronecker’s δ-function which is de-
fined as

δ(x) �
{

1, x = 0
0, x �= 0 .

Now introduce

U(z) =
[
z z2 z3 . . . zs

]T
(25)

and

H(z) = aT U(z) + b̃1
T
X1(z) + b̃2

T
X2(z). (26)

Hence, equation (21) can be formulated as

H(z) = 0, z = W k1
N , ...,W kM

N . (27)

First study those values of the discrete variable z for which
z �= W

lq
N , q ∈ [1, · · · , p]. Equation (26) then takes the form

H̃(z) = aT U(z) + b̃1
T
X1(z) = 0, (28)

z = W
lq
N , q = p + 1, · · · ,M

Notice that H̃(z) is a rational function of z and to fulfill the
zero product, it must contain M−p zeros. The degree of the
numerator polynomial in H̃(z) is however only n−p+s−1
and since M and s satisfy M ≥ n + s, H̃(z) does not have
enough zeros. Therefore equation (21) is only fulfilled if

H̃(z) = aT U(z) + b̃1
T
(zI − A1)−1B1z ≡ 0 (29)

The terms in (29) can be separated since they correspond
to different polynomial coefficients; the first term only in-
volves the s highest powers and so forth.

aT U(z) ≡ 0, ⇒ a = 0

b̃1
T
(zI − A1)−1B1 ≡ 0 (30)

From system theory [9] it is known that equation (30) only
holds for a nonzero b̃1 if and only if (A1,B1) is a non-
controllable pair, or the controllability matrix C has full
rank.

C = [B1 A1B1 · · · A1
n−p−1B1] (31)

=

⎡
⎢⎣

1 − eNλp+1 eλp+1(1 − eNλp+1) · · ·
...

...
1 − eNλn eλn(1 − eNλn) · · ·

⎤
⎥⎦ (32)

The matrix C can be factorized into a diagonal and a Van-
dermonde matrix and it is easy to establish, see e.g. [9] that
under Assumption 1 both these matrices are of full rank. It
is therefore concluded that equation (29) is only true if and
only if

a = 0

b̃1 = 0.
(33)

The remaining part of equation (26) is now

b̃2
T
X2(z) = 0, (34)

which should hold for all z = W k
N . Each component of

X2(z) is non zero for one of the p remaining frequencies.
Which directly implies b̃2 = 0. For the rest of the proof see
e.g. [8].

�
The result shows that the F-ESPRIT method consistently

can estimate all harmonic components subject to that the
number of data is larger or equal to N = 2n + 1.
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4. EXAMPLE

In this example, the algorithm was tested on a signal with a
frequency spectra containing a large number of harmonics.
The signal is from a numerical solution of Maxwell’s equa-
tions when an object is subject to a broadband excitation. It
is a real valued signal consisting of 1371 sinusoids. In Fig-
ure 1 the periodogram with a Chebyshev window shows the
spectral content of this signal.
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Fig. 1. Periodogram of the simulated signal calculated from
8192 time domain samples using a Chebyshev window.

From this signal, frequency estimates of the five low-
est harmonics are sought for. F-ESPRIT is used with data
in the normalized frequency interval {0.019, 0.038}. Using
only N=1024 samples the 5 frequencies are estimated with a
maximum absolute error of 4.3×10−5. To get an idea of the
quality of the estimates we compare them with time domain
ESPRIT for varying sizes of the data length N . To suc-
cessfully use ESPRIT in this scenario filtering with a sharp
low-pass filter is necessary to suppress the harmonics above
the five first. Hence, the signal is low-pass filtered with a
Butterworth filter of order 17 with a cut-off frequency of
0.04. The estimates are then compared by studying the ratio
between the absolute error for each method. These results
are shown in Figure 2, where each subplot contains the ratio
for the different frequencies. From the figures it is seen that
F-ESPRIT outperforms ESPRIT in this scenario.
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