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ABSTRACT

In this paper we consider a common procedure [2] for gen-
erating analytic signals and show how it fails for specific
discrete-time real signals. A new frequency domain tech-
nique is formulated that solves the defect. Both methods
have the same redundancy. The new analytic signal pre-
serves the original signal (real part) as also the zeros of its
discrete spectrum in the negative frequencies. The superi-
ority of the new method is in the introduction of one addi-
tional zero of the continuous spectrum of the original signal
at a negative frequency and a corresponding reduction in
shiftability.

1. INTRODUCTION

A continuous-time analytic signal is a complex time func-
tion having a Fourier transform equal to zero for all ω < 0.
For a complex time sequence, we cannot require the same
constraint since the discrete Fourier transform (DFT) spec-
trum is periodic. Instead, a complex sequence is defined
to be “analytic” [3] by requiring its discrete-time Fourier
transform (DTFT) vanish in the interval [−π, 0). Such a
sequence will henceforth be denoted as a discrete-time ana-
lytic (DTA) signal. The motivation for transforming a real
valued signal to an analytic one stems from the fact that the
negative frequencies are conjugate symmetric of the posi-
tive ones. Thus information contained therein is redundant.
Hence removing negative frequencies while preserving pos-
itive components, will not affect the information contained
in the new signal. The advantage of processing DTA sig-
nals is seen in many applications: for example, in discrete
wavelet transforms, we see reduction of shift sensitivity and
an improved directionality [1], Spectral analysis[7], [8] we
see estimation of instantaneous frequency. Methods cur-
rently used to generate DTA signals are either time domain
[4],[6] filtering methods or frequency-based ones [2]. The
former consists of a lowpass filter design and a spectrum
shift to the right, maintaining optimal attenuation in the
negative frequency band. The frequency domain approach
consists of setting the negative frequencies to zero via the
discrete Fourier transform (DFT), and subsequent genera-
tion of the DTA through an inverse DFT. In the time do-
main approach, the length of the filter affects the accuracy
of the approximation to the analytic signal. For instance in
[4], the number of taps used is 128 which make this method
inappropriate for small-length signals. We show in Section
2 that for a specific class of signals, the frequency domain
algorithm fails by generating signals with zero imaginary
part.
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In this paper, we review the method used in [2] for DTA
function generation. An alternative method based on the
DTFT spectrum is developed. The two techniques are com-
pared for the degree of aliasing generated by measuring their
shiftability [5].

2. DISCRETE ANALYTIC SIGNAL VIA DFT

Oppenheim, et al. [3] formulated the concept of a DTA sig-
nal: For x(n) a finite real valued sequence, the DTA signal
z(n) is defined as,

z(n) = x(n) + jH{x(n)}

where H is the Hilbert transform operator, and j2 = −1.
The periodic spectrum of z(n) is,

Z(ejω) =

N−1∑
n=0

z(n)e−jωn

where N is the length of z(n). The DTFT is periodic with
period 2π. Thus ω is considered in the interval[−π, π]. For
analyticity it is required [[3], Sec.10.4] that Z(ejω) = 0 for
ω ∈ [−π, 0) . Because ω is continuous in the interval [−π, π],
the DTFT cannot be computed exactly. Hence the neces-
sity for using the DFT. The DFT is obtained by uniformly
sampling the DTFT on the ω-axis at ωk = 2πk/N , where
0≤ k ≤ N − 1. Thus,

Z(k) = Z(ejω)|ω= 2πk

N

=

N−1∑
n=0

z(n)e−j2πkn/N

A common approach to generating a DTA signal resides
in the frequency domain [2]. We assume N to be even (the
case for N odd is easily handled). The procedure for deriv-
ing the discrete analytic signal consists of three steps:

• Compute the N-point DFT of x(n).

• Form the N-point DFT of the discrete analytic sig-
nal by multiplying the N-point DFT of x(n) by the
vector:

a(n) =

⎧⎪⎨
⎪⎩

1, n = 0.
2, 1 ≤ n ≤ N/2 − 1.
1, n = N/2.
0, N/2 + 1 ≤ n ≤ N − 1

Thus, the N-point DFT of the discrete analytic signal
is,

Z(k) =

⎧⎪⎨
⎪⎩

X(k), k = 0.
2X(k), 1 ≤ k ≤ N/2 − 1.
X(k), k = N/2.
0, N/2 + 1 ≤ k ≤ N − 1
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• Obtain the discrete analytic signal by computing the
inverse DFT of the N-point DFT :

z(n) = 1/N

N−1∑
k=0

Z(k)ej2πkn/N

Based on this procedure, the analytic function for n even,
is seen to be,

z(n) = x(n) + j(2/N)

N/2−1∑
p=0

x(2p + 1)

cot(π(n − (2p + 1))/N) (1)

and for n odd,

z(n) = x(n) + j(2/N)

N/2−1∑
p=0

x(2p)cot(π(n − 2p)/N) (2)

As stated earlier, a continuous analytic signal is a complex
function; thus a non-zero real signal is not analytic because
of the relationship between the positive and negative fre-
quency. Similarly a non-zero discrete real signal is not ana-
lytic. From equations (1) and (2), we deduce that for specific
discrete-time real signals, the imaginary part of z(n) is zero;
hence the algorithm generates a real signal that is not ana-
lytic. For instance, suppose all even values of x(n) are equal
to some constant α and all odd values to some constant β
(with no loss of generality we assume both constants to be
different from zero). Then, for n even, we have,

imag(z(n)) = (2/N)β

N/2−1∑
p=0

cot(π(n − (2p + 1))/N)

and for n odd,

imag(z(n)) = (2/N)α

N/2−1∑
p=0

cot(π(n − 2p)/N).

For the imaginary part of z(n) to be zero, we must have,

⎧⎪⎨
⎪⎩

N/2−1∑
p=0

cot(π(n − (2p + 1))/N) = 0.

∑N/2−1

p=0
cot(π(n − 2p)/N) = 0

(3)

The conditions in equation (3) are always true (write each
equation as a circulant matrix, and show that the sum of the
first row is equal to zero). Therefore the procedure results
in a signal equal to the original real signal. Hence a DTA is
not generated. As an example using MATLAB 6.5, we see
that:

hilbert([1 2 1 2]) = [1 2 1 2];

3. THE NEW METHOD

We have seen an example where the algorithm in [2] fails to
generate the corresponding DTA signal. The new method,
for which the algorithm in [2] is a special case, is developed
in the frequency domain. The procedure entails adding an
imaginary number to the DC and the Nyquist terms of the
DTA signal obtained using [2]. This guarantees not only
that the DTFT equals zero at ωk = 2πk/N , N/2 + 1≤ k ≤

N − 1, but also at another negative frequency of our choice.
In addition, the real part of the corresponding analytic sig-
nal equals the original signal.

Let x(n) be a finite real valued sequence of length N .
We restrict our attention to the case where N is even. With
reference to equations (1) and (2) let s(n) be a DTA such
that, for n even,

s(n) = x(n) + j(2/N){

N/2−1∑
p=0

x(2p + 1)

cot(π(n − (2p + 1))/N) + a} (4)

and for n odd,

s(n) = x(n) + j(2/N){

N/2−1∑
p=0

x(2p)cot(π(n − 2p)/N) + b} (5)

where a and b are two real variables. We show that the DFT
S(k) of s(n) is zero for N/2 + 1 ≤ k ≤ N − 1. Denote by
z(n) the DTA signal given by the algorithm in [2]. Thus,
for n even,

s(n) = z(n) + j(2/N)a = z(n) + jt(n)

and for n odd,

s(n) = z(n) + j(2/N)b = z(n) + jt(n)

where,

t(n) =

{
a/N n even
b/N n odd.

The DFT of t(n) is equal to,

T (k) =

N−1∑
n=0

t(n)e−j2πkn/N

=

N/2−1∑
n=0

t(2n)e−j2πk2n/N +

N/2−1∑
n=0

t(2n + 1)e−j2πk(2n+1)/N

= 2/N{a

N/2−1∑
n=0

e−j2πk2n/N +

b

N/2−1∑
n=0

e−j2πk(2n+1)/N}

Thus,

S(k) = Z(k) + jT (k)

= Z(K) + j{2/N{a

N/2−1∑
n=0

e−j2πk2n/N +

b

N/2−1∑
n=0

e−j2πk(2n+1)/N}}

where Z(k) is the DFT of z(n). We now show that,

S(k) =

⎧⎪⎨
⎪⎩

X(k) + j(a + b), k = 0
2X(k), 1 ≤ k ≤ N/2 − 1
X(k) + j(a − b) k = N/2
0, N/2 + 1 ≤ k ≤ N − 1.

(6)
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Note that Z(k) satisfies the following,

Z(k) =

⎧⎪⎨
⎪⎩

X(k), k = 0
2X(k), 1 ≤ k ≤ N/2 − 1
X(k), k = N/2
0, N/2 + 1 ≤ k ≤ N − 1.

Therefore it is sufficient to show that,

T (k) =

⎧⎪⎨
⎪⎩

a + b, k = 0
0, 1 ≤ k ≤ N/2 − 1
a − b, k = N/2
0, N/2 + 1 ≤ k ≤ N − 1.

(7)

The proofs for k = 0 and k = N/2 are straightforward. For
1 ≤ k ≤ N/2 − 1 we can verify that

∑N/2−1

n=0
e−j2πk2n/N =

∑N/2−1

n=0
e−j2πk(2n+1)/N = 0.

For the remaining interval the proof follows by the conju-
gate symmetry relationship for real signal. Having estab-
lished equation (6), values for a and b need to be determined
so that the DTFT of s(n) is zero for some ω in the inter-
val [−π, 0). Zeroing the continuous DTFT for some ω in
the negative frequency range will form a neighborhood of ω
where the DTFT could be very small. Hence for such ω we
need that,

S(ejω) =

N−1∑
n=0

s(n)e−jωn = 0. (8)

To determine ω we proceed as follows: Let,

r1(ω) = 2/N
∑N/2−1

p=0
sin(2pω).

α1(ω) =
∑N/2−1

p=0
x(2p)cos(2pω).

α2(ω) = 2/N
∑N/2−1

p=0

∑N/2−1

q=0
x(2q + 1)cot(f(p, q))sin(2pω).

r2(ω) = 2/N
∑N/2

p=1
sin(ω(2p − 1)).

α3(ω) =
∑N/2

p=1
x(2p − 1)cos(ω(2p − 1)).

α4(ω) = 2/N
∑N/2

p=1

∑N/2−1

q=0
x(2q)cot(f(p, q))sin(ω(2p−1)).

ri1(ω) = 2/N
∑N/2−1

p=0
cos(2pω).

αi1(ω) = −
∑N/2−1

p=0
x(2p)sin(2pω).

αi2(ω) = −2/N
∑N/2−1

p=0

∑N/2−1

q=0
x(2q+1)cot(f(p, q))cos(2pω).

ri2(ω) = 2/N
∑N/2

p=1
cos(ω(2p − 1)).

αi3(ω) = −
∑N/2

p=1
x(2p − 1)sin(ω(2p − 1)).

αi4(ω) = −2/N

N/2∑
p=1

N/2−1∑
q=0

x(2q)cot(f(p, q))cos(ω(2p − 1))

where f(p, q) = (π/N)(2p − (2q + 1)). Hence equation (8)
implies that,{

ar1(ω) − br2(ω) = α3(ω) + α4(ω) − α1(ω) − α2(ω)
ari1(ω) − bri2(ω) = αi3(ω) + αi4(ω) − αi1(ω) − αi2(ω).

Accordingly, for �(ω) = r2(ω)ri1(ω) − r1(ω)ri2(ω) �= 0, we
must have,

a = {−ri2(ω)(α3(ω) + α4(ω) − α1(ω) − α2(ω)) +

r2(ω)(αi3(ω) + αi4(ω) − α1(ω) − α2(ω))}/ � (ω)

b = {r1(ω)(αi3(ω) + αi4(ω) − αi1(ω) − αi2(ω)) −

ri1(ω)(α3(ω) + α4(ω) − α1(ω) − α2(ω))}/ � (ω)

(9)

Now we have,

�(ω) = (2/N)2{

N/2∑
p=1

sin(ω(2p − 1))

N/2−1∑
q=0

cos(2ωq) −

N/2∑
p=1

cos(ω(2p − 1))

N/2−1∑
q=0

sin(2ωq)}

= (2/N)2{

N/2∑
p=1

N/2−1∑
q=0

sin(ω(2p − 2q − 1))}

= (2/N)2{

N/2∑
p=1

N/2−1∑
q=0

imag((ej(ω(2p−2q−1)))}

= (2/N)2{imag(

N/2∑
p=1

N/2−1∑
q=0

ej(ω(2p−2q−1))}.

We can show that for ω ∈ (−π, 0),

∑N/2

p=1

∑N/2−1

q=0
ej(ω(2p−2q−1) = j((1−cos(ωN)/2sin(ω)))

and for ω = −π,

∑N/2

p=1

∑N/2−1

q=0
ej(ω(2p−2q−1) = N/2(N/2 − 1).

Therefore, for ω ∈ (−π, 0),

�(ω) = (2/N)2(1 − cos(ωN)/(2sin(ω)))

and for ω = −π,

�(ω) = 0

Thus, for ω ∈ (−π, 0) we have,

�(ω) = 0 ↔ cos(ωN) = 1.

Therefore,

�(ω) = 0 ↔ ω = 2πk/N for N/2 + 1 ≤ k ≤ N − 1.

Letting,

A =

{
ω ∈ [−π, 0)| ω = 2πk/N
where N/2 + 1 ≤ k ≤ N − 1

we conclude that for ω ∈ {(−π, 0)/A} the system (9) has a
solution. Observe that the spectrum of s(n) is equal to zero
on A.

Example: The method described above was used to gen-
erate a DTA signal from the sequence x(n) = [1 2 1 2]
and from the Daubechies scaling filter db16. We choose
constants a and b such that the DTFT is equal to zero at
ω = −2.4 and ω = −π + 0.001 for x(n) and the filter re-
spectively. The ω values are derived empirically. Results
are compared with the DTA signals obtained using the al-
gorithm in [2]. For both cases we illustrate the results using
256 point DFTs.

For x(n) = [1 2 1 2], Figure (1) shows the magni-
tude of the spectra of the DTA signals generated by both
methods. As formulated, the spectrum by the new method
is equal to zero at ω = −2.4, and is small in the neighbor-
hood of ω = −2.4. This is not the case for the one gener-
ated by the algorithm in [2]. Note that the magnetude of
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Figure 1: Discrete analytic signal for x(n) = [1 2 1 2].
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Figure 2: Discrete analytic signal for Daubechies scaling
filter of length 32.

the spectrum obtained by the algorithm in [2] is symmetric.
For the db16 filter, Figure (2) shows that the magnitude of
the spectrum of the DTA signal vanishes faster than that
for the spectrum generated by the algorithm in [2].

4. EXPERIMENTAL RESULTS

The degree of aliasing in a wavelet decomposition is deter-
mined by a measure of the shiftability of the coefficients. A
transform is defined as shiftable [5] when the coefficient en-
ergy in each subband is conserved under input-signal shifts.
DTA signals corresponding to the db16 scaling filter were
generated by the two methods and utilized as the scaling
function filters. Quadrature mirror filters associated with
each of the two filters served as wavelet filters for the two
methods. Subband energy for both transforms was deter-
mined over 16 circular shifts of an impulse that was fed to
the analytic scaling and wavelet filters . Figure (3) shows
the transform subband energies at the different scales, as a
function of input signal shifts.

We observe large oscillations in the subband-energy cor-
responding to the algorithm [2] in (b), (c), (d) whereas it
is almost constant for the new method. The subband en-
ergy in (a) oscillates, but the variation is of order 10−8. We
conclude that the new method generates a spectrum that
suppresses more negative frequencies than that obtained by
using algorithm [2]. Accordingly, aliasing is considerably
reduced. Both methods retain the original signal as the
real part of the analytic signal. However, orthogonality of
the real and imaginary parts is not maintained by the new
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Figure 3: Subband energy for both transform. (a) Level-
1 bandpass subband energy,(b) Level-2 bandpass subband
energy,(c) Level-3 bandpass subband energy,(d) Level-3 low-
pass subband energy.

method.

5. CONCLUSION

We have proposed a new method for generating a DTA sig-
nal for which the algorithm in [2] is a special case (a = b = 0)
. The advantage of the method is that it assures better sup-
pression of negative frequencies. Beside zeroing the DTFT
of the DTA signal at ωk = 2πk/N , where N/2 + 1≤ k ≤
N − 1 , it also zeros the DTFT of the DTA signal at a point
in the negative frequency range, thus leading to improved
shiftability.
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