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ABSTRACT

For complex signals, n-th order moment functions can be
defined in 2n different ways, depending on the placement
of complex conjugates. We demonstrate that, for station-
ary analytic signals, only a few of these different moments
are actually required for a complete n-th order description.
Which, and how many of them, depends on the signal’s
spectrum. We investigate properties of n-th order moments
and spectra with different conjugation patterns and show
how they provide different information about the signal.

1. INTRODUCTION

The reason why most papers in higher-order spectrum anal-
ysis develop results for real rather than complex signals is
that the complex case is so much more complicated: There
are 2n different n-th order moment functions, depending on
where complex conjugate operators are placed. Papers that
deal with complex signals often consider only one of these
possible definitions, which is usually one with � n

2� conju-
gates (where �·� denotes the floor function). This approach
may be valid for some special cases, but not for others.

For instance, in the second-order case, the standard co-
variance Es(t1)s∗(t2) must in general be complemented by
the complementary covariance Es(t1)s(t2). Only if s(t) is
proper will the complementary covariance vanish and thus
not carry information. Propriety simplifies second-order
analysis significantly, and it is often implicitly assumed.
Picinbono [3] has extended the definition of propriety to
higher orders. A process is called n-th order proper if its
only non-zero moments up to order n have an equal num-
ber of conjugated and non-conjugated terms. The rationale
behind this is that, under this definition, a proper Gaussian
process is n-th order proper for all n.

While we cannot expect the proper case in general, this
does not mean that we have to consider all 2n conjugation
patterns for an n-th order moment function. Obviously, all
moment functions with q and n− q conjugates are equiv-
alent because they are related to each other through com-
plex conjugation and/or coordinate transformations. Also,
it is possible to have a number of moment functions equal

to zero, even when the signal is not n-th order proper. In
this paper, we investigate exactly which n-th order moment
functions are required for a complete n-th order characteri-
zation of stationary analytic signals.

2. HIGHER-ORDER SPECTRA OF REAL SIGNALS

To lay the foundation for the discussion of higher-order spec-
tra of analytic signals, we need to talk first about higher-
order spectra of real signals. Higher-order moments can be
defined as time-averages or as ensemble-averages. Obvi-
ously, ensemble-averaging is only possible when there is
a way to obtain multiple realizations of a random process.
Time-averaging, on the other hand, can be performed for
both deterministic signals and individual sample paths of
random processes.

Time-Averages: Let x(t) be a real zero-mean continuous-
time signal, either deterministic or a sample path of a ran-
dom process. We define its n-th order moment function as
the time-average of length T ,

kc
x···x(τ1, ...,τn−1) = 〈x(t)x(t + τ1) · · ·x(t + τn−1)〉 (1)

=
1
T

∫ T/2

−T/2
x(t)x(t + τ1) · · ·x(t + τn−1)dt

The superscript c indicates that kc
x···x(τ1, ...,τn−1) is the mo-

ment function of a continuous-time signal. Let X( f ) be the
Fourier transform of x(t) windowed by a rectangular win-
dow of length T . The n-th order polyspectrum is then

Kc
x···x( f1, ..., fn−1) = 1

T X( f1) · · ·X( fn−1)X∗( f1 + ...+ fn−1).

Sampling x(t) at rate fs = 1/Ts yields the discrete-time
signal x[k] = x(kTs). The n-th order moment function of x[k]
is the time-average of length N

kd
x···x[κ1, ...,κn−1] = 〈x[k]x[k+κ1] · · ·x[k+κn−1]〉

=
N/2

∑
k=−N/2

x[k]x[k+κ1] · · ·x[k+κn−1],

where the superscript d indicates discrete-time. Its (n−1)-
dimensional discrete-time Fourier transform yields the cor-
responding n-th order polyspectrum Kd

x···x( f1, ..., fn−1). The
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moment function of the sampled signal x[k] is in general not
equal to a sampled version of the moment function of x(t):

kd
x···x[κ1, ...,κn−1] �= kc

x···x(κ1Ts, ...,κn−1Ts) (2)

The reason is that time-averaging and sampling are opera-
tions that do not commute. On the left hand side of (2), we
sample first and then compute the time-average, whereas on
the right hand side, we average first and then sample the
time-average. It has been shown by Pflug et al. [1] that
equality in (2) does hold if the sampling frequency fs is cho-
sen as fs ≥ n fmax, where fmax denotes the least upper bound
of frequencies where X( f ) is nonzero.

Ensemble-Averages: Now assume that x(t) is a real
zero-mean continuous-time random signal. We also require
that x(t) be m-th order harmonizable, which means it can
be expressed as

x(t) a.s.=
∫ ∞

−∞
e j2π f tdξ( f ),

where ξ( f ) is an m-th order random function. Its increments
dξ( f ) satisfy the Hermitian symmetry dξ( f ) = dξ∗(− f )
and have moments defined up to m-th order:

E dξ( f1) · · ·dξ( fn) = dnΦx···x( f1, ..., fn), n = 1, ...,m.

Since x(t) is harmonizable, so are all of its moment func-
tions, n = 1, ...,m:

rc
x···x(t,τ1, ...,τn−1) = Ex(t)x(t + τ1) · · ·x(t + τn−1) (3)

=
∫

· · ·
∫ ∞

−∞
exp

(
j2π

[
n−1

∑
i=1

fiτi +
n

∑
i=1

fit

])
dnΦx···x( f1, ..., fn)

Now, if Φx···x( f1, ..., fn) is absolutely continuous, there ex-
ists a density, the spectral correlation

Rc
x···x( f1, ..., fn) =

∂nΦx···x( f1, ..., fn)
∂ f1 · · ·∂ fn

.

We will allow the use of delta functions, and therefore, we
can define Rc

x···x( f1, ..., fn) even in the absence of absolute
continuity of Φx···x( f1, ..., fn). While we have to keep in
mind that this can make Rc

x···x( f1, ..., fn) unbounded, inte-
grals with respect to Rc

x···x( f1, ..., fn)d f1 · · ·d fn then work
like integrals with respect to dnΦx···x( f1, ..., fn).

Suppose now that x(t) is stationary up to order m, which
says that its n-th order correlation, n = 1, ...,m, does not
depend on t. From (3) it is evident that, in the station-
ary case, Rc

x···x( f1, ..., fn) can only be non-zero on the sta-
tionary manifold f1 + ... + fn = 0. Then (3) is a simple
Fourier transform relationship between the stationary mo-
ment mc

x···x(τ1, ...,τn−1) = rc
x···x(0,τ1, ...,τn−1) and the poly-

spectrum Mc
x···x( f1, ..., fn−1), which are both functions of

n−1 variables only:

mc
x···x(τ1, ...,τn−1) =

∫
· · ·

∫ ∞

−∞
Mc

x···x( f1, ..., fn−1) ×

e j2π∑n−1
i=1 fiτi d f1 · · ·d fn−1.

If we sample the random process x(t) to obtain x[k] =
x(kTs), the n-th order correlation function of x[k] is

rd
x···x[k,κ1, ...,κn−1] = Ex[k]x[k+κ1] · · ·x[k+κn−1] (4)

= Ex(kTs)x(kTs +κ1Ts) · · ·x(kTs +κn−1Ts)
= rc

x···x(kTs,κ1Ts, ...,κn−1Ts), (5)

which is a sampled version of the n-th order correlation
function of x(t). This result holds regardless of the sam-
pling frequency. It is due to the fact that ensemble-averaging
and sampling are operations that do commute, unlike time-
averaging and sampling. Thus, the equality (4)=(5) stands
in contrast to the time-average case, where (2) is an in-
equality unless fs ≥ n fmax. Differences between higher-
order moments defined as time-averages and those defined
as ensemble-averages are further illuminated in [4].

3. ANALYTIC SIGNALS

In this section, we look at time- and ensemble-averaged
polyspectra for deterministic and stationary stochastic ana-
lytic signals. The analytic signal is arguably the most impor-
tant example of a complex signal. It is constructed from the
real signal x(t) as s(t) = x(t)+ jx̂(t), where x̂(t) denotes the
Hilbert transform of x(t). Thus, we have S( f ) = u( f )X( f )
for sample paths and dσ( f ) = u( f )dξ( f ) for stochastic pro-
cesses, where u( f ) denotes twice the Heaviside step func-
tion. It might be tempting to conclude from this that poly-
spectra of analytic signals can only be nonzero for fi ≥ 0,
i = 1, ...,n− 1. This is not true. Using S( f ) = u( f )X( f ),
we find that the n-th order polyspectra of the analytic real-
ization s(t) are connected to the n-th order polyspectrum of
its corresponding real signal x(t) as

Kc
s�n s�1 ···s�n−1

( f1, ..., fn−1) = u(±1 f1) · · ·u(±n−1 fn−1) ×
u(±n(−( f1 + ...+ fn−1)))Kc

x···x( f1, ..., fn−1), (6)

where �i stands for either +1 or the conjugating star ∗,
and ±i is +1 for �i = +1 and −1 for �i = ∗. The same
relationship as in (6) holds for Mc

s�n s�1 ···s�n−1
( f1, ..., fn−1)

and the following discussion applies to ensemble-averages
of random processes, as well. We can see from (6) that
Kc

s�n s�1 ···s�n−1
( f1, ..., fn−1) cuts out regions of the polyspec-

trum of the real signal, Kc
x···x( f1, ..., fn−1). Therefore, on its

nonzero domain, Kc
s�n s�1 ···s�n−1

( f1, ..., fn−1) also inherits

the symmetries of Kc
x···x( f1, ..., fn−1). The conjugation pat-

tern determines the selected region and thus also the sym-
metry properties. Only the pattern s∗ss · · ·s selects the all-
positive orthant fi > 0, i = 1, ...,n−1.
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Conditions for Nonzero Polyspectra: Polyspectra of
order n for analytic signals can be zero depending on the
number of conjugates, q, and the spectrum of s(t). Let
fmin and fmax denote the minimum and maximum frequency
where S( f ) is nonzero. In order to obtain a nonzero poly-
spectrum Kc

s�n s�1 ···s�n−1
( f1, ..., fn−1), there must be over-

lap between the support of S�1(±1 f1) · · ·S�n−1(±n−1 fn−1)
and the support of S�n(±n(− f1 − ...− fn−1)). The lowest
nonzero frequency of S�i(±i fi), i = 1, ...,n− 1, is fmin if
�i = +1 and − fmax if �i = ∗, and similarly, the highest
nonzero frequency is fmax if �i = +1 and − fmin if �i = ∗.
Take first the case where q ≥ 1, so we can assume without
loss of generality that �n = ∗. Then we obtain the required
overlap if both of these conditions hold:

(n−q) fmin − (q−1) fmax < fmax, (7)

(n−q) fmax − (q−1) fmin > fmin. (8)

Now, if q = 0, then �n = +1 and we require

(n−1) fmin < − fmin,

(n−1) fmax > − fmax,

which shows that (7) and (8) are valid for q = 0, as well.
Since one of the inequalities (7) and (8) will always be triv-
ially satisfied, a simple condition to guarantee a nonzero
Kc

s�n s�1 ···s�n−1
( f1, ..., fn−1) is

(n−q) fmin −q fmax < 0, 2q ≤ n
(n−q) fmax −q fmin > 0, 2q > n.

(9)

This result holds for polyspectra defined through time- or
ensemble-averages. It bears some comments. First of all, if
either q = 0 or q = n, the condition (9) is fmin < 0, which is
impossible for an analytic signal. Thus, no-starring and all-
starring conjugation patterns yield zero n-th order polyspec-
trum. On the other hand, if n is even, moments with n/2
stars will always be nonzero.

Let us now investigate what effect sampling the band-
limited signal s(t) with fs ≥ 2 fmax has on its polyspectra.
For sampled realizations, there can be additional nonzero
time-averaged polyspectra with other starring patterns. We
get a nonzero aliased domain in Kd

s�n s�1 ···s�n−1
( f1, ..., fn−1)

if there exists overlap between the support of the hypercube
described by S�1(±1 f1) · · ·S�n−1(±n−1 fn−1) and the sup-
port of either S�n(±n fn + fs) or S�n(±n fn− fs). Repeating
the reasoning from above, this translates into the condition

(n−q) fmin −q fmax < fs < (n−q) fmax −q fmin, 2q ≤ n,
(n−q) fmin −q fmax < − fs < (n−q) fmax −q fmin, 2q > n.

for a nonzero aliased domain in Kd
s�n s�1 ···s�n−1

( f1, ..., fn−1).
The condition (9) for a nonzero unaliased domain remains
valid.

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

� � �
� � �
� � �
� � �
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s∗ss∗

sss∗

ss∗s

s∗ss
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s∗s∗s∗
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Fig. 1. Support of bispectra Kd
s�3 s�1 s�2

( f1, f2) with dif-

ferent starring patterns for analytic s(t) sampled with fs ≥
2 fmax. The principal unaliased domain of Kd

xxx( f1, f2)
is diagonally hatched, the principal aliased domain of
Kd

xxx( f1, f2) is cross-hatched.

Because ensemble-averaging and sampling are opera-
tions that commute, there is no higher-order aliasing for
ensemble-averages of stochastic processes [4]. That is, an
ensemble-averaged polyspectrum will always be zero on the
aliased domain of time-averaged polyspectra, whether the
signals are continuous or sampled.

Bi- and Trispectrum: We first illustrate the results in
the preceding section with the bispectrum. While Kc

sss( f1, f2)
and Kc

s∗s∗s∗( f1, f2) must be identically zero, Kd
sss( f1, f2) and

Kd
s∗s∗s∗( f1, f2) can be nonzero if fmin < 1/3 fs and fmax >

1/3 fs. The advantage that a complex analytic description
has is that higher-order aliasing takes place in Kd

sss( f1, f2)
and Kd

s∗s∗s∗( f1, f2), and there only. I.e., Kd
s�3 s�1 s�2

( f1, f2)
with q = 1,2 is unaffected by higher-order aliasing. This
also implies that for q = 1,2, contrary to (2),

kd
s�3 s�1 s�2

[κ1, ...,κn−1] = kc
s�3 s�1 s�2

(κ1Ts, ...,κn−1Ts),

is an equality, as long as the signal is not undersampled, i.e.,
fs ≥ 2 fmax. Figure 1 depicts how the support of bispectra
with different starring patterns covers the frequency plane
− fN ≤ f1, f2 ≤ fN . We can see how Kd

s∗ss( f1, f2) covers the
principal unaliased domain and Kd

sss( f1, f2) covers the prin-
cipal aliased domain of Kd

xxx( f1, f2) in their most common
definitions. This confirms the notion that s∗ss and sss are
the canonical starring patterns for the unaliased and aliased
domains.

If we evaluate the conditions (9) and (3) for nonzero un-
aliased and aliased domains in trispectra with different num-
bers of conjugation operations, we obtain Table 1. There
are two types of unaliased domains, type 1 described by
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q unaliased domains aliased domains
0,4 always zero 4 fmin < fs < 4 fmax (type 2)
1,3 3 fmin < fmax (type 1) 3 fmax − fmin > fs (type 1)
2 always nonzero (type 2) always zero

Table 1. Necessary conditions for nonzero unaliased and
aliased domains in trispectra with different number of con-
jugates for an analytic signal sampled with fs ≥ 2 fmax.

q = 1,3, type 2 by q = 2, and two types of aliased domains,
type 1 described by q = 1,3, type 2 by q = 0,4. Let us
first talk about the two types of unaliased domains. Type 1
only exists (i.e., is nonzero) if 3 fmin < fmax, whereas type
2 always exists. Only type 1 has the ability to distinguish
between two signals s(t) and r(t) that differ only by a con-
stant phase shift. If r(t) = s(t)e jφ, then kc

r∗rrr(τ1,τ2,τ3) =
kc
s∗sss(τ1,τ2,τ3)e2 jφ, whereas kc

r∗r∗rr(τ1,τ2,τ3) is identical to
kc
s∗s∗ss(τ1,τ2,τ3). This means that, if S( f ) does not sat-

isfy 3 fmin < fmax, s(t) and r(t) will be indistinguishable in
trispectral analysis. Thus, they will also have the same kur-
tosis. This is important in deconvolution techniques [2, 5].

At this point, it is important to mention that the usual
definition given for the kurtosis γ4 of an analytic signal,〈|s(t)|4〉 or E |s(t)|4, a naive extension of the definition for
a real signal, is incorrect because it only considers contribu-
tions from unaliased domains of type 2. The correct result
(for time-averages) is

γ4 =
〈
x4(t)

〉
=

〈(
1
2 (s(t)+ s∗(t))

)4
〉

= 1
2Re

〈
s3(t)s∗(t))

〉
+ 3

8

〈|s(t)|4〉
which takes into account the contribution from unaliased
domains of type 1. We can evaluate

〈
s3(t)s∗(t)

〉
by inte-

grating Kc
s�4 s�1 s�2 s�3

( f1, f2, f3) for one particular conju-
gation pattern with q = 1 or q = 3 over its nonzero domain,
and similarly

〈|s(t)|4〉 by integrating the trispectrum for one
particular conjugation pattern with q = 2. In the case of a
sampled realization, the kurtosis is

γ4 = 1
8Re

〈
s4[k]

〉
+ 1

2Re
〈
s3[k]s∗[k])

〉
+ 3

8

〈|s[k]|4〉 ,

which considers the additional contribution from aliased do-
mains of type 2. Note that while

〈|s(t)|4〉 =
〈|s[k]|4〉, we

have
〈
s3(t)s∗(t))

〉 �= 〈
s3[k]s∗[k])

〉
if 3 fmax − fmin > fs be-

cause of the existence of aliased domains of type 1. An
aliased domain of type 1 can exist even if type 2 does not,
and vice versa. Both types will disappear if the signal is suf-
ficiently oversampled with fs ≥ 4 fmax. Aliased domains of
both types are always zero for ensemble-averaged trispectra
of stochastic processes sampled with fs ≥ 2 fmax.

Beyond the Trispectrum: We now generalize the dis-
cussion of the preceding section to n-th order polyspectra.
Let us first talk about the existence condition (9) for nonzero
unaliased domains of time- or ensemble-averaged polyspe-
ctra. We can assume without loss of generality that 2q ≤ n

because polyspectra with q and n−q conjugates are equiv-
alent. For fixed order n, satisfaction of (9) for q−1 implies
satisfaction for q. Thus, if unaliased domains with q− 1
conjugates are nonzero, so will be unaliased domains with
q conjugates. The reverse conclusion is that if unaliased do-
mains with q stars are zero, so will be unaliased domains
with q−1 stars.

The corresponding discussion for the existence condi-
tion (3) for nonzero aliased domains of time-averaged poly-
spectra is more complicated because there are two inequal-
ities involved, which behave contrarily. For fixed order n,
satisfaction of the left inequality of (3) for q−1 implies sat-
isfaction for q. For the right inequality, it goes the opposite
direction: If it holds for q, it will also hold for q−1. Since
both inequalities must be fulfilled for a nonzero aliased do-
main, we conclude that if the left inequality is violated for
q, aliased domains with q or fewer stars will be zero. If
the right inequality is violated for q, aliased domains with q
or more stars will be zero. For instance, sampling the sig-
nal with fs > n fmax violates the right inequality for q = 0,
and therefore guarantees that there will be no higher-order
aliasing at all. Note that there can also be inequalities that
are automatically fulfilled. For example, for n = 4, q = 1
the left inequality is 3 fmin− fmax < fs, which is always true
because fmin < fmax ≤ 2 fs.

4. CONCLUSIONS

Higher-order analysis of complex signals is easy in the n-th
order proper case, where there is at most one distinct n-th or-
der moment to be considered. This situation, however, is far
from being general. In some problems, such as deconvolu-
tion, the n-th order proper case is even detrimental because
it does not allow detection of constant phase shifts. In this
paper, we have shed some light on the improper case. For
stationary analytic signals, we have investigated properties
of n-th order moments and spectra with different conjuga-
tion configurations. Which moments are nonzero depends
on the spectrum of the signal.
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