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ABSTRACT

When a non-constant envelope signal goes through a non-
linear power amplifier, spectral regrowth (broadening) ap-
pears at the output of the power amplifier. To satisfy reg-
ulatory requirements on out of band emissions, spectral
regrowth must be contained. In this paper, we derive a
novel closed-form expression for the output power spectral
density when the power amplifier is quasi-memoryless and
cyclostationarity of the digitally modulated input is taken
into account. We compare our results with the conventional
analysis where stationary input is assumed. We emphasize
the importance of paying attention to the cyclostationary
nature of the input when excess bandwidth is present.

1. INTRODUCTION

Power amplifiers (PAs) are the major source of nonlinearity
in communications systems. To achieve high efficiency from
a given PA, the PA is sometimes driven into its nonlinear
region. When a non-constant envelope signal goes through
a nonlinear PA, spectral regrowth (broadening) appears at
the PA output, which in turn causes adjacent channel inter-
ference (ACI). Due to stringent limits on the ACI imposed
by regulatory bodies, PA nonlinearity must be limited.

It would be very helpful if we can predict spectral re-
growth for a prescribed level of PA nonlinearity. Since more
linear PAs are less efficient, practitioners may wish to use
the PA in a configuration that allows for maximum PA effi-
ciency while satisfying the spectral emission limits. Such an
optimization strategy is feasible if we have tools for spectral
analysis for the nonlinear device.

In the input is Gaussian and stationary, the PA out-
put power spectral density (PSD) has been derived for a
polynomial nonlinear PA model of any order in [1]. When
the PA input is non-Gaussian, theoretical analysis becomes
more complicated; however results are available in [2] for a
7th-order nonlinear PA with (non-)Gaussian inputs. In [3],
phase randomization is used to “stationarize” a cyclosta-
tionary input. To the best of our knowledge, all spectral
analysis results thus far assume the input to be stationary;
see [1] for a literature review on spectral regrowth analysis.

In this paper, we offer an analytic approach to examine
the stationarity of digitally modulated signals. Further-
more, we present novel spectral analysis results that take
into account cyclostationarity of the input signal. A closed-
form expression for the PA output spectrum will be given.
We offer a comparison between the estimated PSD for the
output of the PA, as well as analytic expressions for the PSD
with and without the stationarity assumption. We show
that when cyclostationarity of the input signal is taken into
account, the PSD predicted by our formula matches well
the PSD calculated from the data.

2. POWER AMPLIFIER MODELING

Consider the following baseband PA model [4, 5]:

y(t) =
K∑

k=0

a2k+1|x(t)|2kx(t), (1)

where x(t) is the baseband PA input signal, y(t) is the base-
band PA output signal, and {a2k+1} are complex-valued
coefficients that can be extracted from standard character-
izations (such as AM/AM, AM/PM curves) of the PA. The
highest nonlinearity order is 2K + 1. The fact that only
odd-order nonlinear terms appear in (1) is attributed to
the bandpass nonlinear nature of the PA [4,5].

We see from (1) that the PA complex gain is G(x(t)) =

y(t)/x(t) =
∑K

k=0 a2k+1 |x(t)|2k, which is a function of in-
put amplitude r = |x(t)| only. Writing the complex gain

as G(r) = A(r) ejΦ(r), we refer to A(r) as the AM/AM
conversion, and Φ(r) as the AM/PM conversion. A lin-
ear PA would have constant A(r) and Φ(r) characteristics.
If A(r) is non-constant but Φ(r) is, the corresponding PA
is called strictly memoryless. If both A(r) and Φ(r) are
non-constant, the resulting PA is called quasi-memoryless.
Eq. (1) can be used to describe both types of memoryless
nonlinearity, and hence we do not distinguish the two in
subsequent analysis.

3. DIGITALLY-MODULATED SIGNALS

Consider the following baseband representation of a
digitally-modulated signal:

x(t) =
∞∑

k=−∞
skh(t − kT ), (2)

where sk is the kth symbol, h(t) is impulse response
of the pulse shaping filter, and T is the symbol pe-
riod. Applying the continuous-time Fourier transform
(CTFT) to both sides of (2), we obtain X(f) =
H(f)S(ej2πTf ), where the CTFT of x(t) is defined as
X(f) = F {x(t)} =

∫
x(t)e−j2πtfdt, the CTFT of h(t) is

H(f) = F {h(t)} =
∫

h(t)e−j2πtfdt, and the discrete-time

Fourier transform (DTFT) of sk is defined as S(ej2πTf ) =∑∞
k=−∞ ske−j2πkTf . Note that S(ej2πTf ) is periodic in f

with period 1
T

, i.e., information contained in f ∈ [− 1
2T

, 1
2T

]

is repeated every 1
T

. To preserve the information in

S(ej2πTf ), the pulse shaping filter, H(f), must have a band-
width greater than or equal to 1

T
.

Assume that {sk} is zero-mean, i.i.d with variance γ2s =
E[|sk|2]. The mean and covariance function of x(t) are re-
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Figure 1. Relationship among H(f + m
T

).

spectively, E[x(t)] = 0,

c2x(t; τ) = cum {x∗(t), x(t + τ)}

= γ2s

∞∑
k=−∞

h∗(t − kT )h(t + τ − kT ). (3)

Note that x(t) is not wide-sense stationary (WSS) in general
since (3) may depend on t.

In Appendix A, we show that c2x(t; τ) can be separated
into t-dependent terms and τ -dependent terms as follows:

c2x(t; τ) =
γ2s

T

∞∑
m=−∞

ρ m
T

(τ)e−j 2π
T

mt, (4)

ρu(τ) =

∫
H∗(f + u)H(f)ej2πfτdf. (5)

Inverse CTFT is defined as x(t) = F−1 {X(f)} =∫
X(f)ej2πftdf . From (5), we see that ρu(τ) and H∗(f +

u)H(f) form a CTFT pair. The time average of (4) is

c2x(τ) � c2x(t; τ) =
γ2s

T
ρ0(τ) =

γ2s

T

∫
|H(f)|2ej2πfτdf,

where f(t) � lim∆→∞ 1
2∆

∫ ∆

−∆
f(t)dt represents the time

averaging operation and ρ0(τ) = F−1
{|H(f)|2}.

With respect to h(t), we consider the following two cases:
(i) No excess bandwidth case. When H(f) is band-
limited to bandwidth 1

T
, i.e., H(f) = 0 for |f | > 1

2T
, the

only m for which H(f + m
T

) overlaps with H(f), is m = 0
(see Fig. 1(a)). In this case, ρ m

T
(τ) = 0 except for m =

0. Therefore, the time-dependent term e−j 2π
T

mt in (4) is
immaterial and c2x(t; τ) = γ2s

T
ρ0(τ). Since c2x(t; τ) does

not depend on t, c2x(t; τ) = c2x(τ) and x(t) is WSS. If x(t)
is Gaussian (either real or complex) then it is also strict
sense stationary (SSS).
(ii) Excess bandwidth case. When the bandwidth of
H(f) exceeds 1

T
but does not exceed 2

T
, i.e., H(f) �= 0 for

some |f | > 1
2T

, but H(f) = 0 for |f | > 1
T

, the only m values
for which H(f+ m

T
) overlaps with H(f) are m = 0, m = −1,

and m = 1 (see Fig. 1(b)). In this case, only ρ0(τ), ρ 1
T

(τ),

and ρ− 1
T

(τ) are non-zero, and hence from (4),

c2x(t; τ) =
γ2s

T

(
ρ0(τ) + ρ− 1

T
(τ)ej 2π

T
t + ρ 1

T
(τ)e−j 2π

T
t
)

.(6)

In this case c2x(t; τ) is a function of both t and τ , meaning
that x(t) is not WSS.

4. CYCLOSTATIONARY SPECTRAL
ANALYSIS

In the non-stationary case, the spectrum of the PA out-
put is given by: S2y(f) = F {c2y(τ)}, where c2y(τ) is the
time-averaged version of c2y(t; τ) = cum{y∗(t), y(t + τ)}.
We assume that the input x(t) is Gaussian distributed,
which is well-motivated for applications such as OFDM
(orthogonal frequency division multiplexing). In [1], the
auto-covariance function of y(t) is obtained when x(t) is a
stationary complex-Gaussian random process. Generalizing
the analysis in [1] to the non-stationary case yields:

c2y(t; τ) =
K∑

s=0

1

(s + 1)
|c2x(t; τ)|2sc2x(t; τ) (7)

(
K∑

l=s

a2l+1

(
l

s

)
(l + 1)!(c2x(t; 0))l−s

)
(

K∑
k=s

a2k+1

(
k

s

)
(k + 1)!(c2x(t + τ ; 0))k−s

)∗

,

where c2x(t; τ) is the auto-covariance of x(t) and the in-
put/output data model (1) is assumed. Note that in the
stationary case, i.e., when c2x(t; τ) = c2x(τ), equation (7)
simplifies to:

c2y(τ) =

K∑
s=0

1

(s + 1)
|c2x(τ)|2sc2x(τ)

∣∣∣∣∣
K∑

l=s

a2l+1

(
l

s

)
(l + 1)!(c2x(0))l−s

∣∣∣∣∣
2

, (8)

which is the result presented in [1] (see also [6]). In the
cyclostationary case, we obtain the time average of (7) as

c2y(τ) =
K∑

s=0

K∑
l=s

K∑
k=s

(l + 1)!

(s + 1)

(
l

s

)
(k + 1)!

(
k

s

)
a2l+1 (9)

a∗
2k+1|c2x(t; τ)|2sc2x(t; τ)(c2x(t; 0))l−s(c∗2x(t + τ ; 0))k−s.

Unfortunately, time-average of a product is not the
same as the product of individual time-averages (e.g.,

c2x(t; τ)c2x(t, 0) �= c2x(τ)c2x(0)) so (9) is not easily sim-
plified.

For the digitally-modulated x(t) of (2), we substitute (5)
and (6) into (9) to obtain a closed-form expression for c2y(τ)
in terms of H(f), γ2s, and T . Its Fourier transform then
yields the PSD S2y(f). For simplicity, we describe the result
for a PA given by (1) with K = 1, i.e., including only the
linear and cubic nonlinear terms. In this case, (9) becomes

c2y(τ) = |a1|2 c2x(t; τ)︸ ︷︷ ︸
©1

+2a1a
∗
3 c2x(t; τ)c∗2x(t + τ ; 0)︸ ︷︷ ︸

©2

(10)

+2a∗
1a3 c2x(t; τ)c2x(t; 0)︸ ︷︷ ︸

©3

+4|a3|2 c2x(t; τ)c2x(t; 0)c∗2x(t + τ ; 0)︸ ︷︷ ︸
©4

+2|a3|2 |c2x(t; τ)|2c2x(t; τ)︸ ︷︷ ︸
©5

.
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(b) with root raised cosine filter (β = 0.5).

Figure 2. PA output PSD for a third-order nonlin-
ear PA. The solid line is the estimated PSD based
on output samples; the dashed line corresponds to
(11), and the dash-dotted line is generated using
equation (12).

Substituting (6) into (10) and taking the CTFT on both
sides of (10), we show in Appendix B that the PA output
PSD is

S2y(f) =
γ2s

T

∣∣∣a1H(f) + a3
γ2s

T

(
ρ0(0)H(f)

+ρ 1
T

(0)H(f + 1
T

) + ρ− 1
T

(0)H(f − 1
T

)
)∣∣∣2

+2|a3|2(γ2s

T
)3

(
|H(f)|2 � |H(f)|2 � |H(−f)|2

+2[H∗(f − 1
T

)H(f)] � [H(−f − 1
T

)H∗(−f)] � |H(f)|2
+2[H∗(f + 1

T
)H(f)] � [H(−f + 1

T
)H∗(−f)] � |H(f)|2

+2[H∗(f + 1
T

)H(f)] � [H∗(f − 1
T

)H(f)] � |H(−f)|2
)
,(11)

where � denotes convolution. In the zero excess bandwidth
(WSS) case, H(f) and H(f± 1

T
) do not overlap, H(f)H(f±

1
T

) = 0, ρ 1
T

(0) = ρ− 1
T

(0) = 0, and thus (11) simplifies to

S2y(f) =
γ2s

T

∣∣∣a1 + a3
γ2s

T
ρ0(0)

∣∣∣2|H(f)|2

+2
(γ2s

T

)3

|a3|2|H(f)|2 � |H(f)|2 � |H(−f)|2. (12)

Next, we verify (11) and compare it with (12) using com-
puter simulations.

5. NUMERICAL EXAMPLES

Consider the PA given in (1) with K = 1 and a1 = 15.0008+
0.0908j and a3 = −23.0826+3.3133j. Here, we explore the
PA output PSD when the input x(t) is given by (2) with
the following pulse shaping filter (i) IS-95 pulse shaping
filter [7], or (ii) root raised cosine filter given by H(f) =

⎧⎨
⎩

1 |f | < (1 − β)fc

1
2

+ 1
2

cos
(
π f−(1−β)fc

2βfc

)
(1 − β)fc ≤ |f | ≤ (1 + β)fc

0 |f | > (1 + β)fc

with cut-off frequency fc = 1
2T

, and roll-off factor β = 0.5
(50% excess bandwidth). For both (i) and (ii), sampling
rate is 4 samples per symbol. γ2s is selected such that the
variance of x(t) is 0.017, and |x(t)| enters into the compres-
sion region of the PA.

Figures 2(a) and 2(b) show the PA output PSD corre-
sponding to filters (i) and (ii), respectively. The solid line
is the PA output PSD obtained from 217 samples of y(t).
The dashed line is the PA output PSD calculated based on
(11). The dash-dotted line is the PA output PSD calcu-
lated based on (12) (i.e., assuming a stationary input data
model). From both figures, we observe that the dashed line
and the solid line coincide, thus verifying the theoretical
expression in (11). The small gap (in the adjacent chan-
nel) between the solid line and the dashed-dotted line in
Fig. 2(b) indicates that (12) cannot be used to accurately
predict the PA output PSD when the input has excess band-
width. Therefore, treating digitally-modulated signals with
excess bandwidth as stationary underestimates out-of-band
emission by as much as 6 dB for the example shown. For a
different PA or a different input drive level, the discrepancy
between stationary and nonstationary spectral analysis can
be more or less than what we see here. The discrepancy
is negligible in Fig. 2(a) because the filter has basically no
excess bandwidth, except that small ripples are present out-
side the passband [− 1

2T
, 1

2T
].

6. CONCLUSIONS

Power amplifiers are used in most communication systems
and are inherently nonlinear. Spectral analysis can help to
evaluate the suitability of a given PA for amplifying certain
signals so the spectral mask of the intended application is
met. In this paper, we investigated bandpass nonlinearities
with Gaussian inputs. We took into account the cyclosta-
tionary nature of the digitally-modulated input. We showed
that when the pulse shaping filter has no excess bandwidth,
the input signal is WSS and previous results in [1] and [2]
apply. We derived a novel closed-form expression for the
PSD at the output of the PA when the input signal is cy-
clostationary which happens when the pulse shaping filter
has excess bandwidth. We showed that spectral analysis as-
suming a stationary input does not accurately predict the
PSD of the cyclostationary PA output, and the discrepancy
can be resolved if cyclostationarity is taken into account.
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A Derivation of Eq. (4)

The inverse CTFT of H(f) is h(t) =
∫

H(f)ej2πftdf . Sub-
stituting this into (3), we obtain

c2x(t; τ) = γ2s

∫∫
H∗(f1)e

−j2πf1tH(f2)e
j2πf2(t+τ)

∞∑
k=−∞

ej2π(f1−f2)kT df1df2. (13)

Using the fact that
∑∞

k=−∞ ej2πfkT is the Fourier series

expansion of
∑∞

m=−∞
1
T

δ(f − m
T

), we rewrite (13) as

c2x(t; τ) =
γ2s

T

∞∑
m=−∞

∫
H∗(f2 +

m

T
)e−j2πf2t

e−j 2π
T

mtH(f2)e
j2πf2(t+τ)df2

=
γ2s

T

∞∑
m=−∞

e−j 2π
T

mt

∫
H∗(f +

m

T
)H(f)ej2πfτdf,

which yields (4) and (5).

B Derivation of Eq. (11)

We substitute (6) into (10) and write out each of the time-
averages. Recall that the time average of ejαt is zero except
when α is 0 modulo 2π.

©1 =
γ2s

T
ρ0(τ) (14)

©2 =
(γ2s

T

)2 (
ρ0(τ)ρ∗

0(0) + ρ 1
T

(τ)ρ∗
1
T

(0)ej 2π
T

τ (15)

+ρ− 1
T

(τ)ρ∗
− 1

T
(0)e−j 2π

T
τ
)

©3 = (
γ2s

T
)2

(
ρ0(τ)ρ0(0) + ρ 1

T
(τ)ρ− 1

T
(0) + ρ− 1

T
(τ)ρ 1

T
(0)

)
©4 = (

γ2s

T
)3

(
ρ0(τ)|ρ0(0)|2 + ρ 1

T
(τ)ρ0(0)ρ∗

1
T

(0)ej 2π
T

τ

+ρ 1
T

(τ)ρ− 1
T

(0)ρ∗
0(0) + ρ0(τ)|ρ 1

T
(0)|2ej 2π

T
τ

+ρ0(τ)|ρ− 1
T

(0)|2e−j 2π
T

τ + ρ− 1
T

(τ)ρ 1
T

(0)ρ∗
0(0)

+ρ− 1
T

(τ)ρ0(0)ρ∗
− 1

T
(0)e−j 2π

T
τ
)

(16)

©5 = (
γ2s

T
)3

(
|ρ0(τ)|2ρ0(τ) + 2|ρ− 1

T
(τ)|2ρ0(τ)

+2|ρ 1
T

(τ)|2ρ0(τ) + 2ρ 1
T

(τ)ρ− 1
T

(τ)ρ∗
0(τ)

)
. (17)

To obtain S2y(f), we take the CTFT of (10), i.e.,

S2y(f) = F {c2y(τ)} = |a1|2F {©1 } + 4Re (a∗
1a3F {©3 })

+4|a3|2F {©4 } + 2|a3|2F {©5 } . (18)

From (5), we see that the CTFT of ρu(τ) is H∗(f +u)H(f).
Therefore, the CTFT of (14)-(17) is respectively,

F {©1 } =
γ2s

T
|H(f)|2 (19)

F {©2 } = (
γ2s

T
)2

(
|H(f)|2ρ∗

0(0) + ρ∗
1
T

(0)H∗(f)H(f − 1
T

)

+ρ∗
− 1

T
(0)ρ− 1

T
(τ)H∗(f)H(f + 1

T
)
)

(20)

F {©3 } = (
γ2s

T
)2

(
ρ0(0)|H(f)|2 + ρ− 1

T
(0)H∗(f + 1

T
)H(f)

+ρ 1
T

(0)H∗(f − 1
T

)H(f)
)

(21)

F {©4 } =

(
γ2s

T
)3

(
|ρ0(0)|2|H(f)|2 + ρ0(0)ρ∗

1
T

(0)H(f − 1
T

)H∗(f)

+ρ− 1
T

(0)ρ∗
0(0)H∗(f + 1

T
)H(f) + |ρ 1

T
(0)|2|H(f − 1

T
)|2

+|ρ− 1
T

(0)|2|H(f + 1
T

)|2 + ρ 1
T

(0)ρ∗
0(0)H∗(f − 1

T
)H(f)

+ρ0(0)ρ∗
− 1

T
(0)H(f + 1

T
)H∗(f)

)
(22)

F {©5 } = (
γ2s

T
)3

(
|H(f)|2 � |H(f)|2 � |H(−f)|2 (23)

+2[H∗(f − 1
T

)H(f)] � [H(−f − 1
T

)H∗(−f)] � |H(f)|2
+2[H∗(f + 1

T
)H(f)] � [H(−f + 1

T
)H∗(−f)] � |H(f)|2

+2[H∗(f + 1
T

)H(f)] � [H∗(f − 1
T

)H(f)] � |H(−f)|2
)
.

Using the fact that ρ 1
T

(0) = ρ∗
− 1

T
(0), we simplify (21) as

F {©3 } = (
γ2s

T
)2H(f)

(
ρ0(0)H(f) + ρ 1

T
(0)H(f + 1

T
)

+ρ− 1
T

(0)H(f − 1
T

)
)∗

(24)

and realize that F {©2 } = F {©3 }∗. Moreover, we use the
fact that H∗(f − 1

T
)H(f + 1

T
) = 0 to simplify (22) as

F {©4 } = (
γ2s

T
)3

∣∣∣ρ0(0)H(f) + ρ− 1
T

(0)H(f − 1
T

)

+ρ 1
T

(0)H(f + 1
T

)
∣∣∣2. (25)

Substituting (19), (24)-(25) and (23) back into (18), we
obtain (11).
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