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ABSTRACT
Besides the traditional accesses to accelerate the conver-

gence of LMS algorithm, such as step-size control and in-

put signal decorrelation, tap-length control is an emerging

technique and attracts more and more attentions. Many tap-

length control schemes are proposed and most of them are

based on gradient search method. In this paper, the suffi-

cient condition for tap-length gradient adaption is obtained

based on the assumption of white Gaussian input. The anal-

ysis reveals that two requirements should be satisfied when

use gradient method to search for optimum tap-length. One

is that the unknown impulse response has a decay envelope,

while the other requires that the number of the tap difference

should be selected carefully.

1. INTRODUCTION

The well-known Least Mean Square (LMS) algorithm has

been widely used in a variety of adaptive filtering applica-

tions such as echo cancellation, channel equalization, flow

control, and multi-user detection, owing to the computa-

tional simplicity, numerical stability and ease of implemen-

tation [1]. However, low convergence rate limits its further

popularity. Consequently, many variants, especially utiliz-

ing step-size control and input decorrelation, are proposed

to accelerate the convergence rate of LMS algorithm.

Besides the two accesses mentioned above, tap-length

control is another effective method to improve LMS, whose

performance is significantly influenced by the taps number.

To be specific, redundant taps would slow down conver-

gence, accumulate more stochastic gradient noise, and ag-

gravate computational cost. On the other hand, taps number

must be large enough to reach acceptable identification ac-

curacy. Therefore, there must exist an optimum tap-length

that results in the fastest convergence rate.

How to select a fixed optimum tap-length had been stud-

ied very early [2], whereas the theoretical analysis of the
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influence of tap-length adaption on the convergence rate

did not appear until 1990s [3, 4]. There are some con-

trol schemes [3, 5, 6, 7, 8], which aim to accelerate the

initial convergence using a monotonically increasing tap-

length sequence. Recently, some practical algorithms [9,

10, 11] that adapt tap-length in both directions are proposed.

Most of the variable tap-length algorithms [9, 10, 11] are

based on gradient method, which iteratively adapts the tap-

length along the direction where cost function goes down.

However, the condition for applying gradient method to search

for optimum tap-length is not investigated in the available

literatures.

In this paper, the convergence behavior of Mean Squared

Estimate Error (MSEE) is drawn based on the assumption of

white Gaussian input. Then the cost function of tap-length

is defined as MSEE after one adaption. Consequently, the

sufficient condition for tap-length gradient adaption is that

the K-decimated cost function has unique minimum or mono-

tonically varies, where K ≥ 1 is the number of tap differ-

ence. By partitioning the unknown impulse response into

blocks with same length, K, we prove that, if and only if,

the energy of the partitioned response monotonically de-

creases, above condition can be satisfied. Therefore, decay

envelope of impulse response and carefully selected K are

II - 4610-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



the sufficient condition for tap-length gradient adaption.

2. MSEE CONVERGENCE WITH TAP-LENGTH
ADAPTION

The work is presented using the set-up of system identifica-

tion, see fig.1, where adaptive filter, wL(n), is used to iden-

tify an unknown system, cM , with the constraint of mini-

mizing a cost function of estimate error, ξ(n) = E{e2(n)}.

In most literatures, the taps number of adaptive filter is con-

sidered exactly identical to that of unknown system, i.e.,

D = |L − M | = 0. The situation of truncation error,

L < M , is studied in [12]. Generally, in the instance of

D �= 0, the optimum weights, w∗
L, and minimum MSEE,

ξ∗(L), are, respectively,

w∗
L =

{
c̄L + R−1

L RL,DcD, L < M ;[
cT

M ,0T
D

]T
, otherwise.

(1)

and

ξ∗(L) =

⎧⎨
⎩

σ2
v + cT

D

(
RD − RD,LR−1

L RL,D

)
cD,

L < M ;
σ2

v , otherwise.
(2)

where

cM =
[

c̄L

cD

]
, RM =

[
RL RL,D

RD,L RD

]
, L < M ,

denote, respectively, the partitioned matrix (vector) of un-

known system response and input autocorrelation matrix,

RM = E{xM (n)xT
M (n)}, and σ2

v denotes the variance of

measurement noise. It can be readily recognized from (1)

and (2) that the truncation error may reduce identification

accuracy and yield biased result, unless the input signal is

uncorrelated, i.e. RM = σ2
xIM , where σ2

x denotes the in-

put variance. On the contrary, the redundant taps produce

an unbiasd result and does not bring any excess error to the

minimum MSEE.

In LMS algorithm, wL(n) is adapted iteratively along

the stochastic gradient direction,

wL(n + 1) = wL(n) + µe(n)xL(n) , (3)

where µ denotes adaption step-size and estimate error

e(n) = xT
M (n)cM + v(n) − xT

L(n)wL(n) .

To arbitrary input signal, the convergence behavior of LMS

is extremely sophisticated [1], even if the taps number is

identical to that of unknown system. In this paper, the input

is restricted to white Gaussian signal, which means the iden-

tification is unbiased in the scenarios of truncation error.

Based on the well-known independence theory, the conver-

gence of Mean Squared Weights Error (MSWE), ε(L, n) =

E{‖wL − cM‖2} (with D zeros padded to the shorter vec-

tor), is eagerly derived [8],

ε(L, n + 1) = βε(L, n) + (η − β)t(L) + γ , (4)

where β, η, and γ are parameters, and t(L) denotes the trun-

cation error,

β = 1 − 2µσ2
x + (L + 2)µ2σ4

x , γ = Lµ2σ2
xσ2

v ,

η = 1 + Lµ2σ4
x , t(L) =

{ ‖cD‖2 , L < M ;
0 , otherwise .

Using the relation between MSEE and MSWE, ξ(L, n) =
σ2

v + σ2
xε(L, n), MSEE converges as

ξ(L, n + 1) = βξ(L, n) + (η − β)
(
σ2

v + σ2
xt(L)

)
. (5)

The influence of tap-length on MSEE convergence is de-

scribed by (5), from which the properties of optimum tap-

length will be studied in the following sections.

3. SUFFICIENT CONDITION FOR TAP-LENGTH
GRADIENT ADAPTION

3.1. Tap-Length Gradient Adaption

Many tap-length control schemes are based on gradient search

method, which estimates MSEEs of two adaptive filters with

adjacent tap-lengths, i.e., ξ̃(L, n) and ξ̃(L−K,n), and mea-

sures its difference,

∇ξ̃(L, n) =
ξ̃(L, n) − ξ̃(L − K,n)

K
, (6)

where K ≥ 1 is called the number of the tap difference.

Subsequently, the tap-length is adapted along the negative

difference direction,

L ⇐ L − sign{∇ξ̃(L, n)}K . (7)

According to (6) and (7), L adapts to (tracks) the min-

imum value of the sampled ξ(L, n), on the condition that

the sampled ξ(L, n) has unique minimum or monotonically

varies, where K is the sampling interval. However, in the

available literatures there is no answer to the question – “un-

der what circumstances, tap-length gradient adaption method

can be applied?” – which seems more important than the

adaption algorithm itself. Because dispensable tap-length

adaption may computational expensive or lead to instability

problems [13].

3.2. Optimum Tap-Length

The optimum tap-length, L∗, is defined as the one that min-

imizing MSEE after one iteration,

L∗ = arg min
L

{ξ(L, n)|ξ(L′, n − 1)} . (8)
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Please notice that L∗ is time variant and independent to the

tap-length before nth iteration, i.e., L′. According to the

adaption rule of gradient search method, intuitively, L∗ is

the goal to which controlled tap-length iteratively tracks.

3.3. Relative Step-size

From (5), the behavior of LMS is determined by tap-length

as well as step-size. To achieve the best convergence perfor-

mance, combining tap-length control and step-size control

is helpful. Consequently, a relative step-size is introduced

and will be fixed during the adaption of tap-length [8],

µ′ = (L + 2)µ . (9)

Definition (9) comes partly from the maximum step-size

bound [8], max{µ} = 2
(L+2)σ2

x
, and optimum initial step-

size [4, 6], µ∗ = 1
(L+2)σ2

x
, partly from Normalized LMS

algorithm, in which step-size can be recognized as normal-

ized to the energy of input data in the filter buffer. Actually,

adjusting tap-length with relative step-size fixed is used in

many variable tap-length algorithms [3, 4, 7, 8], though in

some of them this is not explicitly declared.

3.4. Condition for Tap-Length Gradient Adaption

According to (8), L∗ can be solved by set the difference

of ξ(L, n) (with respect to L) zero, with relative step-size

fixed. Interval K is introduced to measure the difference.

The unknown system response cM can be also partitioned

into m blocks with same length K,

cT
M =

[
c(0)

K

T
, c(1)

K

T
, · · · , c(m−1)

K

T
]

, (10)

where M = mK. After some calculus (in appendix), the

following two propositions are proved equivalent.

• Proposition A: the energy of the partitioned unknown
impulse response monotonically decreases, i.e.,

‖c(i−1)
K ‖2 ≥ ‖c(i)

K ‖2, ∀ 0 < i < m.

• Proposition B: the extremum of ξ(L, n), if exists, is
unique minimum.

Recall section 3.1, proposition B is the sufficient condi-

tion for applying gradient search method, while proposition

A demands the unknown response has decay envelope, as

well as K is carefully selected. Consequently, the follow-

ing theorem is derived.

Theorem: the sufficient condition for tap-length gradi-
ent adaption is that the unknown system response has a de-
cay envelope, at the same time the number of the tap differ-
ence is carefully selected.

The proposed theorem firstly reveals that the unknown

impulse response with decay envelope is required for apply-

ing gradient search method. As a matter of fact, such system

is rather common in the physical world, i.e., acoustic echo

path, and the transmission of wave. Therefore, gradient tap-

length adaption algorithm can be widely used in many adap-

tive filtering applications. Furthermore, in the application of

channel equalization or inverse identification, the unknown

response is, generally, unimodal and decay in both direc-

tions. Correspondingly, the equalizer is centered and adds

or removes taps in both side, where the theorem can be read-

ily extended to. On the other hand, the sample applications

presented in literatures are equalizers (or inverse identifica-

tion) [3, 4, 5, 9], or with decay envelope [8, 10, 11], which

confirm the proposed theorem.

The second problem disclosed by the proposed theorem

is that the number of the tap difference is an important fac-

tor to tap-length gradient adaption algorithms. If a response

with decay envelope is partitioned into two blocks, the con-

dition of monotonically decreasing, i.e., ‖c(0)
K ‖2 ≥ ‖c(1)

K ‖2,

is certainly held. However, with the reduction of K, the

condition may be unsatisfied because of the arbitrary re-

sponse shape. Extremely, K = 1 and the response is M -

partitioned, the condition definitely would not be satisfied

in physical world. On the other hand, system performance

will also deteriorate if K is too large, which results in a

large deviation of the obtained tap-length from the optimal

value. Therefore, the number of the tap difference should

be carefully select and is dependent on application.

4. CONCLUSION

The energy of the partitioned unknown system response mono-

tonically decreases is proved to be the sufficient condition

for tap-length adaption applying gradient search method.

The analysis results indicate that tap-length control algo-

rithm can be applied a variety of applications with decay re-

sponse envelope, whereas the number of the tap difference

must be carefully selected.

5. APPENDIX: PROOF OF THE EQUIVALENCE
BETWEEN TOW PROPOSITIONS

Firstly, MSEE is reproduced to a function of tap-length and

relative step-size by utilizing (9) in (5),

ξ(L, n) =
(
1 − 2µ′σ2

x

L+2 + µ′2σ4
x

L+2

)
ξ(L′, n − 1)

+
(

2µ′σ2
x

L+2 + 2µ′2σ4
x

(L+2)2

) (
σ2

v + σ2
xt(L)

)
.

(11)

Notice that variable tap-length L is independent to the cur-

rent MSEE, ξ(L′, n− 1), and previous tap-length, L′. Then

with µ′ fixed, the first order difference of (11) with respect
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to L is got

∇ξ(L, n) = ξ(L,n)−ξ(L−K,n)
K

= 2µ′σ4
x

(
J

L(L−K) + t(L)
LK − t(L−K)

(L−K)K

)
,

(12)

where K is the number of the tap difference and

J =
(2 − µ′σ2

x)ξ(L′, n − 1) − 2σ2
v

2σ2
x

.

In (12) and the following calculus, L is assumed large enough,

L � 4max{µ′}σ2
x = 8, which is generally held for appli-

cations using tap-length adaption. Some items in (12) with

L2 in denominator are neglected because they are so small

with respect to the others. Similarly, L + 2 is approximated

to L.

The constraint of extreme, Lext, is obtained by set (12)

zero,

KJ + (L − K)t(L) + Lt(L − k) = 0 . (13)

The second order difference must be evaluated to determine

if Lext is minimum or maximum,

∇2ξ(L, n) = ∇ξ(L,n)−∇ξ(L−K,n)
K

= 2µ′σ4
x

(
−2J

L(L−K)(L−2K) + t(L)
LK2

− 2t(L−K)
(L−K)K2 + t(L−2K)

(K−2K)K2

)
.

(14)

Then utilizing (13) in (14), the second order difference at

Lext is achieved,

∇2ξ(L, n)
∣∣
Lext

= 2µ′σ4
x

t(L)−2t(L−K)+t(L−2K)

(L−2K)K2
. (15)

If the unknown system response is partitioned as (10), the

truncation error can be rewritten to

t(L) =

⎧⎪⎨
⎪⎩

m−1∑
i= L

K

‖c(i)
K ‖2, L < M ;

0, otherwise .

(16)

Consequently, using (16) in (15), one gets

∇2ξ(L, n)
∣∣
Lext

=
2µ′σ4

x

(
‖c( L

K −2)

K ‖2 − ‖c( L
K −1)

K ‖2
)

(L − 2K)K2
,

(17)

It can be readily obtained that ξ(L, n)|Lext
will be a mini-

mum, if and only if, ‖c(i)
K ‖2 monotonically decreases. Be-

cause it is impossible that there has no maximum, but more

than one minimum. Therefore, the extreme, if exists, must

be unique minimum. The proof to the mentioned equiva-

lence is closed.
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