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ABSTRACT 

This paper presents a statistical analysis of the multi-split 

LMS algorithm. Deterministic recursions are obtained for 

the mean weight vector and the mean square error. 

Simulation results display excellent agreement with the 

theoretical predictions, and enable us to validate the 

proposed models for both transient and steady-state 

behaviors. 

1. INTRODUCTION 

The multi-split processing technique has been used in 

adaptive systems for improving the convergence behavior 

of the LMS algorithm [1-3]. It consists of a continued 

splitting process of the filter impulse response in 

symmetric and antisymmetric parts. The filter is then 

realized as a set of zero-order filters connected in parallel, 

and with each single coefficient independently updated. 

Such a technique can be viewed as a transform domain 

filter, in which multi-split preprocessing is applied to the 

input data vector. 

An advantage of the multi-split transform is its ease of 

implementation. The computational burden is proportional 

to the number of filter coefficients N, and when N is equal 

to a power of two, the multi-split transform can be 

obtained by a butterfly computation scheme with no 

multiplication operation [1,4]. 

Recently, an analysis that justifies the improved 

performance of the multi-split LMS algorithm has been 

proposed in [4,5]. It is based on the fact that multi-split 

transform does not reduce the eigenvalue spread, but it 

does improve the diagonalization factor of the input signal 

correlation matrix, which is exploited by a power-

normalized, time-varying step-size LMS algorithm for 

updating the filter coefficients in adaptive systems. 

However, an analytical model for such an algorithm has 

not yet been provided in the literature. 

Our purpose in this paper is to introduce a statistical 

analysis of the multi-split LMS algorithm. Deterministic 

recursions that predict the transient and steady-state 

behaviors of the mean weight vector and mean square 

error are derived. Furthermore, their convergences 

towards the mean weight vector and the minimum mean 

square error of the optimum filter are also investigated. 

Finally, simulation results validate our analysis. 

2. MULTI-SPLIT TRANSVERSAL FILTERING 

2.1 OPTIMUM MULTI-SPLIT WIENER FILTER

Consider initially the classical scheme of a nonadaptive 

transversal filter (Figure 1), where w denotes the N-by-1 

tap-weight vector and 

x(n)=[x(n), x(n 1), …, x(n N+1)]t              (1) 

the tap-input vector. The input signal x(n) and the desired 

response d(n) are modeled as wide-sense stationary 

discrete-time stochastic processes of zero-mean, Gaussian, 

with variance x
2 and d

2, respectively. 

The optimum weight vector wopt, called the Wiener 

vector, is given by [6-8] 

wopt=R
1
p,                                  (2) 

where R is the N-by-N correlation matrix of x(n), and p is 

the N-by-1 cross-correlation vector between x(n) and d(n). 

Figure 1: Transversal filtering. 

For ease of presentation of the multi-split filtering 

scheme, let N=2L, where L is an integer number greater 

than one. Without loss of generality, also consider that all 

the parameters are real-valued. 

It has been shown in [3,4] that the multi-split filtering 

problem can be formulated and solved by using a linearly-

constrained optimization, and can be implemented by 

means of a parallel GSC structure. The resulting multi-

split filtering scheme can be represented by the block 

diagram in Figure 2, where 
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NNN

NNN

N MMJ

MJM
M ,               (3) 

JN/2 is the N/2-by-N/2 exchange matrix, which has unit 

elements along the cross diagonal and zeros elsewhere, 

M1=[1] and w i, for i=0, 1, …, N 1, are the single 

coefficients of the zero-order filters. It can be verified that 

M is a matrix of +1’s and –1’s, in which the inner product 

of any two distinct columns is zero. In fact, M is a 

nonsingular matrix and Mt
M=2L

I.

The estimation error is then given by 

e(n)=d(n) w
t
x (n),                         (4) 

where 
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w =[w 0, w 1, …, w N 1]
t                      (5) 

and 

x (n)=M
t
x(n)=[x 0(n), x 1(n), …, x N 1(n)]t.       (6) 

In the mean-squared-error sense, w  is chosen to 

minimize the following cost function: 

(w )=E{e2(n)}= d
2 2w

t
M

t
p+w

t
M

t
RMw .     (7) 

The optimum solution is given by 

w opt=[Mt
RM] 1

M
t
p=M

1
R

1
p=(1/2L)Mt

wopt,     (8) 

and the scheme of Figure 2 corresponds to the optimum 

multi-split Wiener filter: 

wopt=Mw opt.                              (9) 

Substituting (8) in (7), the minimum mean-square error is 

found to be 

min= d
2

p
t
R

1
p= d

2
p

t
wopt= d

2
p

t
Mw opt,      (10) 

which is, therefore, equal to the minimum mean-square 

error of the optimum Wiener filter. 

Figure 2: Multi-split transform of the input x(n). 

2.2 ADAPTIVE MULTI-SPLIT FILTERING

It has been shown that the multi-split transform is not an 

input whitening transformation. Instead, it increases the 

diagonalization factor of the input signal correlation 

matrix without affecting its eigenvalue spread [4,5]. 

In the adaptive context, a power-normalized, time-

varying step-size LMS algorithm, which exploits the 

nature of the transformed input correlation matrix, has 

been proposed for updating the single coefficients 

independently [3,4]: 
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2
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nwnw i
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ii ,         (11) 

where 

))1()((
1

)1()( 2222 nnx
n

nn iiii ,    (12) 

 is the adaptation step-size and  is the forgetting factor 

(0<< 1). 

3. STATISTICAL ANALYSIS 

3.1 TRANSIENT BEHAVIOR

A. Mean Weight Vector

The expected value of the weight adaptation equation 

leads to the recursion: 

}
)(

)()(
{)}1({)}({

2 n

nenx
EnwEnwE

i

i
ii .   (13) 

In order to evaluate the last expectation in (13), let us 

treat the argument as a ratio of two random variables: 

z
v

u

n

nenx

i

i

)(

)()(
2

.                      (14) 

Thus, if we assume that u and v are jointly Gaussian with 

zero-mean, the expected value of z is given by [9]: 

22
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v

uvE

vE

uvE
zE .                    (15) 

The assumption that x i(n)e(n) and i
2(n) are jointly 

Gaussian can be validated through comparisons of their 

distribution functions with those of a Gaussian 

(hypothesis testing). For the equalization system 

considered in Section 4, such comparisons are shown in 

Figure 3, which have also been tested successfully by the 

Kolmogoroff-Smirnov test [9]. 

(a): random variable u

(b): random variable v

Figure 3: Comparison of the distribution functions of u

and v in (14) with the Gaussian distribution function. The 

dashed lines correspond to Gaussian distributions with 

same mean values as u and v.
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Although the mean value of v is not equal to zero, we 

proceed under the assumption that (15) holds. 

Based on aforementioned assumptions, the following 

approximation is used for the last expectation in (13): 
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Proceeding: 
n

l

ii

ln

ii lxnenxE
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where the effects of the statistical dependence between 

x i(n) and w i(n-1) have been neglected. Now, since x i(n)

and d(n) are Gaussian, it can be shown, using the moment 

factoring theorem, that: 
22 3)}()()({ ixiii plxndnxE                 (18) 

and 
22 3)}()()({ ixijiji rlxnxnxE ,              (19) 

where pi=E{x i(n)d(n)} and rij= E{x i(n) x j(n)}. For the 

denominator in (16), we obtain: 
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nEnE . (20) 

Thus, we find the following deterministic recursion for 

the mean weight convergence: 
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or 

E{w (n)}=[I 2
M

t
RM]E{w (n 1)}+ 2

M
t
p, (22) 

where 

)1(2

)1(3
n

n

2

3
,                                     (23) 

for =1, and 
2=diag[ x 0

2,  x 1
2, …,  x N 1

2].             (24) 

B. Mean Square Error

Squaring the estimation error and taking the expected 

value yields: 
1

0
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     = d
2 2p

t
ME{w (n 1)}+ 

+tr[Mt
RMK(n 1)],                       (25) 

where K(n 1)=E{w (n 1)w t(n 1)} is the tap-weight 

correlation matrix, and the effects of the statistical 

dependence between d(n) and w i(n-1) have also been 

neglected. Proceeding: 
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The expected values in the terms in  have been 

evaluated. For the term in 2, the following approximation 

is used: 
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seeing that  is sufficiently small and n is large. The final 

recursive equation for K(n 1) is given by: 

K(n 1)=K(n 2)+ 

+2 2[MtpE{w t(n 2)} MtRMK(n 2)]+ 

+(4/9) 2 2[2M
t
pp

t
M+ d

2
M

t
RM] 2+

(8/9) 2 2[2M
t
pE{w

t(n 2)}M
t
RM+

                    p
t
ME{w (n 2)}M

t
RM] 2+

+(4/9) 2 2[2M
t
RMK(n 2)Mt

RM+

E{w
t(n 2)}M

t
RME{w (n 2)}M

t
RM] 2. (28) 

3.2 STEADY-STATE BEHAVIOR

A. Mean Weight Vector

For the steady-state analysis, it is assumed that the 

algorithm converges as n  and 

limn w(n)=limn E{w(n)}=w .             (29) 

Replacing w(n) with w  in (22) yields 

w =[Mt
RM] 1

M
t
p,                        (30)

which corresponds to the optimum solution in (8). 

B. Mean Square Error

An expression for the steady-state MSE behavior is 

determined by replacing w (n 1) with w  in (25). It is 

given by 
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limn (n)= d
2

p
t
R

1
p= min,                   (31) 

which corresponds to the minimum mean-square error in 

(10), as expected. 

4. SIMULATION RESULTS 

In order to validate the proposed analysis, we consider the 

same equalization system in [8, chap.5] (Figure 4). The 

input channel is binary, with b(n)= 1, and the impulse 

response of the channel is described by the raised cosine: 

otherwise,0

3,2,1))),2(cos(1( 2
2
1 jj

c S

j ,            (32) 

where S controls the eigenvalue spread (R) of the 

correlation matrix of the tap inputs in the equalizer, with 

(R)=6.0782 for S= 2.9 and (R)=46.8216 for S= 3.5. 

The sequence v(n) is an additive white noise that corrupts 

the channel output with variance v
2=0.001, and the 

equalizer has eleven coefficients. 

Figure 4: Adaptive equalizer for simulation. 

Figure 5 compares the simulated (100 independent 

trials) mean square error behavior with the analytical 

model. It can be verified that the proposed statistical 

analysis predicts with good accuracy the transient and 

steady-state behaviors of the multi-split LMS algorithm. 

The algorithm parameters were =0.0455 and =1. 

5. SUMMARY 

This paper has presented a statistical analysis for the 

transient and steady-state behaviors of the multi-split 

LMS algorithm. Deterministic recursions have been 

derived for the mean weight vector and the mean square 

error. The convergence of such recursions towards the 

mean weight vector and the minimum mean-square error 

of the optimum filter has been analytically demonstrated 

and confirmed by simulations. This kind of analysis is 

useful for adaptive algorithm design and evaluation. 
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(a): (R)=6.0782 

(b): (R)=46.8216 

Figure 5: Mean square error behavior. 
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