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Abstract— This paper presents an analytical model for predicting the
stochastic behavior of the Affine Projection (AP) algorithm operating in
a nonstationary environment. The model is derived for autoregressive
(AR) Gaussian inputs and for unity step size (fastest convergence).
Deterministic recursive equations are presented for the mean weight and
mean square error for a large number of adaptive taps N as compared to
the algorithm order P. The model predictions show excellent agreement
with Monte Carlo simulations in transient and steady-state. The learning
behavior of the AP algorithm in nonstationary environments is of great
interest in applications such as acoustic echo cancellation.

I. INTRODUCTION

Adaptive filtering is used in a large number of engineering ap-
plications. The least mean squares (LMS) adaptive algorithm and
its normalized version (NLMS) are among the most often used
adaptive filtering algorithms. However, their convergence rates are
significantly reduced for non-white (highly correlated) inputs [1].
Acoustic echo cancellation is one important application with such
input signal characteristics. The Affine Projection (AP) algorithm
was proposed by Ozeki and Umeda in 1984 [2] as a solution to
this problem. The AP algorithm updates the adaptive filter weights
in directions that are orthogonal to the last P input vectors. It has
been shown that the AP algorithm converges much faster than LMS
or NLMS for correlated inputs.

Analyses of the AP algorithm in stationary environments for differ-
ent input models have been presented in [3], [4] and by several other
authors. However, very few results are available for the important
case of nonstationary environments. In [5], tracking properties of the
NLMS-OCEF algorithm (a generalization of the AP algorithm) have
been derived based on an independent input signal model and for a
random walk non-stationarity model. The tracking model derived in
[5] has been shown to agree with simulations for white inputs and
for reasonably large input vector delays. Results for the AP algorithm
(unit input vector delay) with highly correlated input signals were not
presented.

This paper presents a new statistical analysis of the AP algorithm
for nonstationary environments and autoregressive input signals with
arbitrary zero-mean distribution. Analytical recursive models are
derived for the mean weight and mean square error behaviors for
nonstationarities modeled by a random walk model. Monte Carlo
simulations show excellent agreement between theory and algorithm
behavior for different degrees of nonstationarity and for higly corre-
lated input signals.

II. THE NONSTATIONARY DATA MODEL

The adaptive system attempts to estimate a desired signal d(n)
modeled by
d(n) = w*" (n)u(n) +r(n) €]
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where w°(n) = [wd(n) w(n) ... w_1(n)]” denotes the time-
varying optimum tap-weight vector and r(n) is a white noise with
variance o2, which accounts for measurement noise and modeling
errors.

The input signal u(n) is assumed to be a stationary AR process of
order P. Such a process can model input signals for many practical
applications. Let u(n) be a vector of N samples of u(n). Thus,

P
u(n) = Zaiu(n —1) + z(n) = U(n)a+ z(n) (2)
i=1

where matrix U(n) = [u(n — 1)...u(n — P)] is a collection of P
past input vectors u(n — k) = [u(n —k) ... u(n—k— N +1)]T
and z(n) = [z(n) ... z(n—N+1)]7 is a vector with samples from

a stationary white idependent Gaussian process with variance o?.
The least squares estimate of the parameter vector a is given by:

a(n) = [U" (n)U(n)] "' U" (n)u(n) ©)

where UT (n)U(n) is assumed of rank P.
The time variations of the optimum tap-weight vector w°(n) are
assumed to follow the random walk model

w®(n+1) = w°(n) +q(n), @

where g(n) is an independent zero-mean white noise vector process
with variance aqz. This simplified model is frequently used with good
results in analysis of adaptive filters in nonstationary environments

[51, [6].

III. THE AFFINE PROJECTION ALGORITHM

The weight update equation of the AP algorithm with step size
(maximum convergence speed) unity can be written as [2], [7]:

Wi+ 1) = w(n) + e () )

where the error signal e(n) is given by
e(n) = w*T (m)u(n) + r(n) - w” (m)u(n) ©
where w(n) = [wo(n) wi(n) ... wy—1(n)]T is the adaptive

weight vector. The vector ®(n) defines the direction of update, and
is given by:
®(n) =u(n) — U(n)a(n) (7)

The order of the AP algorithm is defined by the number (P + 1) of
input vectors used to determine ®(n).
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IV. VECTOR AND STATISTICAL PROPERTIES OF ¥

The following analysis invokes assumptions similar to the inde-
pendence assumption used to analyze many stochastic algorithms [1].
Assumption Al: The statistical dependence between z(n) and U(n)
can be neglected. This assumption is justified as follows and is more
realistic for NV > P.

Equation (2) shows an algebraic dependence between z(n) and
vectors u(n — 1), ..., u(n — P). Also, z(n) is of dimension N.
Consider Py(n) = U(n)[UT (n)U(n)]"'U” (n), the projection
matrix onto the subspace spanned by the columns of U(n), and
P,(n) = I — Py(n), the projection matrix onto the orthogonal
complement subspace. Then, z(n) can be decomposed as z,(n) +
z1 (n), where z,(n) = Py(n)z(n) and z1(n) = Po(n)z(n).
Only z,(n) is algebraically dependent upon U(n). Moreover, since
z(n) is white, the average energy of z(n) is equally distributed
among its N dimensions. Thus, only the energy in z,(n) creates
a dependence between z(n) and U(n). This dependence can be
neglected if N > P.

Assumption A2: ®(n) and the weight vector w(n) are statistically
independent.

Assumption A2 is similar to the independence assumption applied
to delay line adaptive filters with white inputs since ®(n) is a vector
of estimates of the white noise sequence z(n) [7].

Substituting (2) in (7) yields

®(n) = [I - Py(n)]z(n) = Po(n)z(n) = z.(n) ®)

Eq. (8) shows that @(n) is orthogonal to the columns of U(n).

The structure and the properties of the correlation matrix Rgg =
E{®(n)®7 (n)} require consideration of the vector and statistical
properties of ®(n).

First, z,1 (n) is a vector with power only in (/N — P) dimensions of
the N-dimensional space. The vector z, (n) contributes the power in
the remaining P dimensions. Consider a given iteration (a fixed value
for m). In general, the dimensions excited by zi(n) are different
for each sample function of the adaptive process because of the
randomness of u(n). On average, this is equivalent to all dimensions
excited at each run (for any given n) with (N — P)/N of the power
in z(n). This reasoning is detailed in the following calculations.

From (8), the correlation matrix of @(n) can be written as:

Ryy = E{8()87 ()} = B{z ()2 ()} ()

Using z(n) = 21 (n) +2,(n) and noting that E{z (n)z. (n)} =
0 and E{z,(n)z] (n)} = 0, since for each run zy (n) and z,(n)
always have powers in different directions, it is easy to show that

Roo = B{z(n)z" (n)} — E{z. (n)z., (n)} (10)

An expression for Rg4 is now derived based on a equal distribution
of the average power in each dimension. The total power contributed
by each term on the r.h.s. of (10) is given by

trlE{z(n)z" (n)}] = N - o2 (11)
and
tr[E{z.(n)zl (n)}] = P - o2 (12)
Distributing the power equally in all dimenisions results in
Rys = E{®(n)®" (n)} =0} - I =(N]; P) oI (13)

Assumption A3: ®(n) is a zero mean Gaussian random vector.
Eq. (8) shows that each component ¢(n—1) of ®(n) is determined
by E;-\;l Po,;z(n—j+1). From assumption A1 and z(n) white, the

random variables in this sum are independent. Thus, by the Central
Limit Theorem, the distribution of @ (n) tends to a Gaussian for large
N.

V. MEAN WEIGHT BEHAVIOR

Defining the weight error vector, v(n) = w(n)—w®(n) and using
(4) and (6), (5) can be written as
@(n)u’(n)

v(n+1) =v(n)— Wv(n) +

&(n)

W’"(n) —q(n)

(14)
Pre-multiplying (14) by u” (n) and U7 (n), and using the proper-
ties derived in [7] yields
®(n)®" (n)
&7 (n)®(n)
®(n)
&7 (n)®(n)

®(n)

v(n+1) = v(n) - ®7 (n)®(n)

v(n) + ra(n)
15)

+ a"(n)g(n) —a(n)

where 74(n) is the filtered noise sequence [7]

P
ra(n) =r(n) =Y ai(n)r(n — i)

i=1

(16)

and g(n) is the (P x 1) vector

g(n) = diag{U” (n)Q(n)L}

where L is a (P x P) upper triangular matrix with all nonzero
elements equal to one and Q(n) is the (N X P) matrix:

amn

Q(n)=[q(rn—1) q(n—2)...q(n—P)] (18)
B{v(n+1)} = E{v(n)} — E{%v(m}
Q(n) TalN
+E{<I>T<n><1><n) o )} 19

ﬂéTn n) b — n
+ B{ groasa” (W) | - Blam)

Under assumption A2 and noting that 7(n) and g(n) being zero-
mean and independent of any other signal makes the three last
expected values in the r.h.s. of (19) equal to zero, yields

E{v(n+1)} = E{v(n)} - E{ %}E{v(n)} (20)

Each element of the expectation in the rh.s. of (20) has a
numerator given by ¢(n — i)¢(n — j) and a denominator equal to
Z,]::Ol ¢*(n—k). Since the components of ®(n) affect only two out
of N terms in the denominator, numerator and denominator can be
assumed weakly correlated for IV large. For ergodic signals, this is
equivalent to applying the averaging principle [8], as ¢p(n—1)p(n—7)
tends to be slowly varying when compared to @7 (n)@®(n) for large
N. Hence, the following approximation is used:

B{[#" (n)®(n)] ' #(n)@" (n)} ~ F{[&" (n)®(n)] ' }Roq
@n
where Ry4 is given by (13).

The expected value of E{[®%(n)®(n)]"'} is determined using
the assumption that ®(n) is Gaussian distributed and neglecting the
statistical dependence between its components (estimates of a white
sequence). Thus, y = ®T(n)®(n) has a chi-square distribution with
G = N — P degrees of freedom. The value of G arises from the
statistical properties of ®(n) determined in the previous section.
Thus, [4]
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1

T “19y _
BT )20 ) = Sz e
where D'?b = (N — P)/N o2. Using (22) in (20) leads to:
1

which is the recursion for the mean weight error vector.

VI. MEAN SQUARE ERROR BEHAVIOR

Squaring (6) and taking the expected value leads, after some
algebraic manipulations, to

E{e’(n)} = (1 +aTa+ o2tr[E{[UT (n)Un)]* }]) ol
+tr[RgeK(n)]

@4

where K(n) = E{v(n)v”(n)} is the weight-error correlation
matrix. In determining (24), it was assumed that the algorithm has
sufficient order (greater or equal to P). Thus, 4(n) ~ a was used.

The first term of (24) is a function of the input statistics. The
second term needs to be determined. Postmultiplying (15) by its
transpose, taking the expected value, using assumptions Al and A2,
and using the same considerations to determine (23) and (24) leads
to the recursive expression:

K(n+1) =K(n)— K(ﬂﬂ{%}
(gl
+E{ 25’33’;5") (m)v" (n )%} (25)
{@T( o ra(n)ra(n)%}
+ E{ %fg(n)g”n)a%}
+ E{a(n)q” (n)}

The first two expectations in (25) have already been determined.
Since the distribution of v(n) is unknown, the evaluation of the third
expectation requires further approximations. Extensive simulations
have shown that an adequate approximation is the ratio of the
expected values. Thus, the following approximation is used

®(n)®7 (n) r, \ ®(n)®" (n) ~
B e rima) ™ 0 Erow | ~
- E{®(n)@" (n)v(n)vT (n)®(n)®7 (n)}

E{[@7 (n)@(n)]?} 26)

Eq. (26) can be evaluated using some further approximations which
cannot be presented here for reasons of space. To evaluate the fifth
expectations, the statistical dependence between ®(n) and U(n)
is neglected, besides the approximations already explained. Results
these approximations in (25) yields a recursion for K(n).

1

K(n+1) 2GC-2)

=K(n)— [K(n)Rgg + Ry K(n)]

+[%-tr[K(n)]+(1——) BE{v'(n)}- B{v(n)}

R _
< gy (1T B (U0 )
2Ry i a’¥T(n)a )
XSG —2)(G—19) +og (1 oG- -9)%
(27
where ¥ (n) is the (P x P) matrix given by:
U(n) = E{UT(n)AU(n)} (28)
with
111 1
12 2 ... 2
A P 1 2 3 ... 3 (29)
123 .. N

VII. STEADY-STATE BEHAVIOR — TRACKING

Using Rgg = O';I and noting from (23) that lim, e E{v(n)} =
0, (27) in steady-state becomes

K(n+ 1) :(1 _ %)K(n) + mtr[x(n)]l

1 T 2 E{[UT (n)U -1 U—T
+(1 %t 2 PUOT WO ) oS!

1 a’¥(n)a )

+a; (a R et U ) |

7P T a2 (G-2)(G—-4)

(30)

which shows that lim,_,., K(n) is a diagonal matrix. Taking the
trace of (30) and solving for tr[K(co)] = limy, 0 tr[K(n)] yields

u{K (o0)] = %[64){(1 +a"a+ 2t B{UT () Um)] 1)

o7 2, 1 a’¥(n)a 2
3G -2)(C - 4) ( 7T 2 G-2)(C - 4)) }
31
Using (31) in (24) leads to
lim E{e’(n)} =(1 talat aZtr[E{[UT(n)U(n)rl}])
N(G +2) 2
(1 eaeas)” oY

4 T N(G +2) 2
+<U¢+a \Il(n)a)i(G DG+ o,

In (32) containing o2 is the fluctuation error and the term containing
03 is the lag error, the latter responsible for the tracking performance
of the algorithm. Thus, the lag misadjustment of the AP algorithm is
given by
0':;, +aT¥(n)a

1+ aTa+ o?tr[E{[UT(n)U(n)]~'}]
L _NG+2) o

(G—-4)(G+6) a2

VIII. SIMULATIONS

Mlag—AP =

(33)

This section presents simulations to verify the accuracy of the
analytical models given by equations (23), (24) and (27). In all cases,
the matrices E{[U” (n)U(n)] "'} and ¥(n) have been numerically
estimated using the input process.
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The following parameters have been used in the examples: 0(2,, =1
and o2 = 107, input process AR(1) with a; = —0.9, order of the
algorithm - AP(9) (P = 8), length of the adaptive filter N = 64,
128 and 256. The variance 02 is selected to obtain a desired degree of
nonstationary of S = VN 0w0gq/or. Practical cases occur for S < 2
[6].

Figs. 1 - 3 show the MSE behavior for the examples. In all cases,
there is excellent agreement between simulations (a) (100 runs) and
the analytical predictions (b) of the proposed model, both during
transient and in steady-state.

Fig. 4 compares the lag misadjustments of the AP and LMS
algorithms for a range of S. The LMS lag misadjustment [9], given
by Miag—ms = N 03 /4;w$ has been evaluated for two values

= %*/WNM]’ which leads to

the minimum overall misadjustment; (ii) pmaz,,, = m, which
leads to the maximum convergence rate. Fig. 4 shows that the AP
algorithm has a lag misadjustment comparable (but smaller) to LMS
with 8 = Bminp;saa-

of the step size p: (1) Mmin,,; 0a

0 Mean-Square Error
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Fig. 1. MSE: S =2,02 =5.433,02 = 1.15x 1078, N =64 and P = 2
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Fig. 2. MSE: § =2,02 =5.35,07 =5.85x 10" %, N = 128 and P = 2

IX. CONCLUSIONS

This paper has presented an analytical model for predicting the
stochastic behavior of the AP algorithm operating in a nonstationary
environment for AR Gaussian inputs and for unity step size (fastest
convergence). Deterministic recursive equations were derived for the
mean weight and the mean square error for a large number of adaptive
taps N compared to the algorithm order P. The new theory yields
excellent agreement with Monte Carlo simulations in both transient
and steady-state phases of adaptation.

0 Mean-Square Error

-20

(a) rel
=30 N

=50
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Fig. 3. MSE: § = 2,02 =5.30,02 =2.95% 1079, N =256 and P =2
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Fig. 4. Lag Misadjustments: (a) AP. (b) LMS with 4 = tmin,,;s0q- (©)
LMS with g = pmaz,,;
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