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ABSTRACT

A parameterization of an adaptive IIR filter’s poles
is developed, based on balanced realization theory. From
this we develop a local approximation of the actual
adapted pole parameters, in which convergence speed
is related to a certain eigenvalue spread. This, in turn,
is shown to relate to the Hankel singular values of the
system to be identified, as well as certain coefficient
sensitivity functions of the adapted filter. Based on
these properties, a new adaptive IIR algorithm is pro-
posed. In order to achieve faster convergence, it com-
bines an adaptive lattice with function approximation.

1. INTRODUCTION

Adaptive IIR filters can in principle represent an ad-
vantageous alternative in relation to adaptive FIR fil-
ters, due to their capacity of providing long impulse
responses with a small number of coefficients. Prob-
lems related to local minima, stability and the effect of
poles close to the unit circle have been tackled, over the
years, by several authors, leading to different adaptive
algorithms and realization structures. In most cases,
the numerical examples that are given are second or-
der cases.

One aspect of adaptive IIR filters that hasn’t re-
ceived much attention is that the perfomance of simple
constant gain algorithms can rapidly degrade as the
order of the filter grows. It can easily be verified by
simulations [1] that, even in the absence of local min-
ima, the adaptation of filters with order greater than 2
(4, for instance) can remain almost stopped in regions
were the mean square error is far from being acceptable.
While other adaptive algorithms, such as the Newton
kind, are less susceptible to this effect, their greater
computational complexity undermines the main moti-
vation of adaptive IIR filters, which is low computa-
tional complexity. More insight into this aspect of the
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convergence of adaptive IIR filters is, therefore, desir-
able. This is the problem we address here.

2. ANALYTICAL FRAMEWORK

2.1. True gradient adaptation on the reduced
error surface

We consider, initially, that a rational function Ĥ(z)
is adapted so as to minimize the mean square error
between the output ŷ(n) = Ĥ(z)u(n) produced for a
known white input u(n) and the output of a system
H(z) to the same input, y(n) = H(z)u(n) + η(n). In
this mixed notation, z is the unit-delay operator, with
zu(n) = u(n − 1). Assuming additive noise η(n) is
independent of u(n) makes the problem equivalent to
the minimization of the norm ||H(z) − Ĥ(z)||2.

A less general problem, now, is to assume H(z)
is known. If the order imposed on Ĥ(z) is smaller
than the order of H(z), this problem doesn’t have a
closed-form solution and is still an optimization prob-
lem of interest. One possible procedure for solving it
would be as follows. 1) Choose an initial value for the
poles of Ĥ(z). 2) Given these poles, obtain the zeros
of Ĥ(z) that minimize ||H(z) − Ĥ(z)||2(this problem
has a closed-form solution). The error thus achieved,
denoted by ||g(z)||2 = ||H(z) − Ĥ(z)||2, depends only
on the poles of Ĥ(z) and is termed the reduced error
surface. 3) Adapt whatever are the pole parameters
wk by the gradient, so that at iteration n + 1 we have

wk(n + 1) = wk(n) − µ

2
∂

∂wk
‖g(z)‖2

, (1)

and go back to step 2. The fact that H(z) is known
here by no means makes the aforementioned problem
of very slow convergence disappear. For our purposes
this is good: as will be seen, when (1) is cast in a
different parameterization a powerful insight is gained
in relation to the origin of this convergence problem.
Moreover, this extends to our original problem, where
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H(z) is not known and stochastic gradient adaptation
is employed, and where the assumption that the orders
of Ĥ(z) and H(z) are equal doesn’t make the problem
trivial.

2.2. SVD analysis of the reduced error surface

We consider that in Ĥ(z) we can vary M zeros, M

poles and a gain. We say, therefore, that Ĥ(z) is “of
order M” . It can be shown that, in this case, on the
reduce error surface we have H(z)− Ĥ(z) = g(z)V (z),
where g(z) is strictly causal and V (z) is the unit-norm
all-pass function that has the same poles as Ĥ(z) [1].
From this it also follows that

||g(z)||2 = vtΓ2
Hv, (2)

where ΓH is the Hankel form of system H(z) and vector
v contains the coefficients of the expansion of V (z). It
should be noted that ||g(z)||2 = ||H(z)− Ĥ(z)||2, since
V (z) is all-pass.

Now, if H(z) has order N then ΓH can be written
as a function of its singular values σk and Schmidt pairs
(ζk, ηk) as ΓH =

∑N
k=1 ζkσkηt

k [2], where sets ηk and
ζk are orthonormal. From this and (2) it results that
‖g(z)‖2 =

∑N
k=1 vtζkσ2

kζt
kv. We can then return to

polynomial form and write

‖g(z)‖2 =
N∑

k=1

σ2
k 〈ζk(z), V (z)〉2 =

N∑
k=1

σ2
kα2

k, (3)

where αk
.= 〈ζk(z), V (z)〉 ≤ 1. Functions ζk(z) are

scaled (to unit norm) controllability functions of a bal-
anced realization of H(z). As can be seen, the error is
a quadratic function of the terms αk. In the following,
we consider N = M and show that the terms αk can
also be used to parameterize the poles of Ĥ(z).

2.3. Balanced form linked parameterization

We consider initially a function H̃(z) = C(z)/D(z),
of order M as Ĥ(z). H̃(z) is not necessarily equal
to the system H(z) considered above. In the follow-
ing, also, the notation F (z) .= zMF (z−1) is used, for
any F (z). It can be shown that the M scaled control-
lability functions ζ̃k(z) of a balanced implementation
of H̃(z) and the functions {U(z), zU(z), z2U(z), . . .},
U(z) .= D(z)/D(z), constitute an orthonormal basis
for the space H2 of causal and stable functions of z [1].
From the denominator of Ĥ(z) = B(z)/A(z) we form
the all-pass function V (z) = A(z)/A(z), which belongs
to H2. Therefore, with P (z)/Q(z) ∈ H2, V (z) can
always be written in function of that basis as

V (z) =
A(z)
A(z)

=
M∑

k=1

αk ζ̃k(z) +
P (z)
Q(z)

D(z)
D(z)

. (4)

If the αk are given, then it can be shown that (4)
leads to a system of linear equations, where the M
coefficients of monic A(z) and the M + 1 coefficients
of P (z) make up a total of 2M + 1 unknowns, for the
same number of equations. We have, then,

[
θD − θRT −θD

] [
a
p

]
= b,

where, for any F (z), θF is a convolution matrix com-
posed of the coefficients of F (z), T is the anti-diagonal
permutation matrix, and a, p and b contain the coeffi-
cients of A(z), P (z) and R(z) − zMD(z), respectively.

If, otherwise, the coefficients of A(z) are given, the
parameters αk can be obtained directly from αk =
〈ζ̃k(z), V (z)〉. Alternatively, (4) gives a system of 2M+
1 linear equations and the same number of unknowns,

[
θAΦR θD

] [
α
p

]
= c,

where α contains the parameters αk, c has the coeffi-
cients of A(z)D(z) and ΦR is composed of the coeffi-
cients of the numerators of ζ̃k(z).

As seen, then, we can go back and forth between
the coefficients of A(z) and parameters αk, which con-
stitute, therefore, a different parameterization of the
poles of Ĥ(z) = B(z)/A(z). This parameterization is
linked to the function H̃(z) adopted in the beginning.

It may be possible that an adaptive method can be
developed where parameters αk are, themselves, the
adapted parameters. In this scheme, the linked func-
tion H̃(z) would play the role of an initial estimate of
H(z). The motivation for this would be the fact that if
H̃(z) ≈ H(z) then the error surface would be close to
quadratic and, as follows from (3), the problem of slow
convergence could be overcome by simply using a dif-
ferent adaptation gain µk = µ/σ2

k for each parameter.
This idea is not pursued here, however. Otherwise, in
the following we will use parameters αk to describe the
adaptation process of a given set of parameters wk by
the gradient. Besides the greater understanding of the
convergence of gradient algorithms this wil provide, it
will also lead to an algorithm that attempts to over-
come the problem of slow convergence.

2.4. Local approximation

We are now in a position to return to the adaptation
given by (1). As follows from the previous discussion,
the poles of Ĥ(z) can be parameterized by the bal-
anced form linked parameters αk, which we group in
α = [α1 . . . αM ]t. Moreover, when the linked function
satisfies H̃(z) = H(z), the error is entirely determined
by α as given by (3). Therefore, the adaptation of
the parameters w = [w1 . . . wM ]t used for the poles,
and the resulting error, are entirely described by the

II - 442

➡ ➡



sequence α(n). Of course, for this to be useful it is
necessary in the first place to be able to write α(n+1)
in function of α(n). To this end, a first-order approxi-
mation of α(n + 1) is given by

α̃(n + 1) = α(n) +
∂α

∂w

∣∣∣∣
w(n)

[w(n + 1) − w(n)] , (5)

where ∂α
∂w

∣∣
w(n)

.= J(α(n)) is the Jacobian matrix of
derivatives ( ∂αi/∂wj at row i and column j) at point
w(n). Now, considering adaptation of w by the gradi-
ent, from (1) we have w(n + 1)−w(n) = −µ

2
∂ε
∂w

∣∣
w(n)

,
where we use ε

.= ||g(z)||2, for notational simplicity.
With (5) this leads to

α̃(n + 1) = α(n) − µ

2
∂α

∂w
∂ε

∂w

∣∣∣∣
w(n)

.

Applying the chain law of differentiation, we can always
write ∂ε

∂w =
(

∂α
∂w

)t ∂ε
∂α . Also, from (3), we have ∂ε

∂α =
2Σ2α, where Σ is the diagonal matrix with singular
values σk. We arrive, finally, at

α̃(n + 1) =
[
I − µJ(α(n))J(α(n))tΣ2

]
α(n). (6)

This expression applies at any point α(n), no assump-
tion that α(n) is a stationary point of the adaptation
having been made. As can be seen, there is a par-
tial separation of the effect of the system to be iden-
tified, which affects Σ and J, and the effect of the
parameterization of the adaptation, which affects only
J. The expression is also similar to what is obtained
for the steepest-descent algorithm in adaptive FIR fil-
tering, the eigenvalues of J(α(n))J(α(n))tΣ2 playing
the part of the eigenvalues of the input correlation ma-
trix. These eigenvalues are non-negative, which can be
seen noting that the non-null eigenvalues of JJtΣ2 and
JtΣ2J = (ΣJ)t(ΣJ) are always equal. The larger of
them will tend to limit the value of the gain µ. Conver-
gence will be slow then at a point α(n) if the minimum
eigenvalue of J(α(n))J(α(n))tΣ2 is small and α(n) is
in the direction of the associated eigenvector.

2.5. Relation with Hessian approximation

Usually, convergence analysis of adaptive IIR filters is
carried out directly in terms of the adapted parame-
ters and local approximation is restricted to station-
ary points w∗. Writing the Hessian matrix as a func-
tion of the parameters αk, it can be shown for gradi-
ent adaptation that at a stationary point w∗ we have
w(n + 1) − w∗ ≈

[
I − µJt(w∗)Σ2J(w∗)

]
[w(n) − w∗].

As in the local approximation (6), the use of the bal-
anced form linked parameterization leads to a partial
separation of the effects of the system to be identified
and the choice of the adapted parameters. The local
approximation, though, is more useful since it is not
restricted to stationary points.

3. JACOBIAN GRAMMIAN PROPERTIES

For analyzing the eigenvalue spread of JJtΣ2, denoted
χJΣ, it can be verified that the product upper bound
χJχΣ is often useful. χΣ depends on the relative po-
sition of the poles and zeros of H(z), being equal to
1 when H(z) is all-pass. To deal with χJ , we call
upon the orthonormal controllability functions ξk(z) =
D̂k(z)/D(z) of a lattice realization of H(z) and define
βk

.= 〈ξk(z), V (z)〉. We have Jβ = QJ for the as-
sociated Jacobian, with Q orthogonal, and, therefore,
χJ = χJ,β . This shows that χJ depends only on the
poles of H(z). When the adapted parameters are the
direct form parameters, it can be also be shown that
[J−t

β J−1
β ]i,j = 〈D̂i(z), D̂j(z)〉 at the global minimum.

Using subscript o in association with the global mini-
mum, it follows that χJ,o is closer to one when the poles
of H(z) are away from the unit circle and/or uniformly
distributed in angle. A trivial case is D(z) = 1−aMzM ,
which gives χJ,o = 1. For the lattice form only partial
analytical properties have been obtained so far. How-
ever, it has been observed numerically that, in relation
to the direct form case, χJ,o tends to be closer to one.

4. SUCESSIVE APPROXIMATIONS

An adaptive IIR algorithm that makes use of the prop-
erties of matrices JJt and Σ seen in the previous sec-
tion is presented in the following. Due to space lim-
itation, the algorithm is not described in a more for-
mal manner and some details are left out. A block
diagram of the algorithm is at the end of this para-
graph. From an initial estimate C∗(z)/D∗(z) of sys-
tem H(z) = C(z)/D(z) (estimate that in some cases
may be the origin of the coefficient space), the transfer
function of a fixed auxiliary block is set at Ha(z) =
[C∗(z) − D∗(z)]/D∗(z) and an M order lattice adap-
tive filter is initialized with Ĥ(z) = D∗(z)/D∗(z). The
simplified partial (stochastic) gradient algorithm [1] is
employed. Assuming H(z) and Ha(z) also have order
M , the overall system H(z) − Ha(z) to be identified
by the lattice has order 2M . Depending on the ini-
tial estimate, the overall system will be close to all-
pass and the first M eigenvalues of Σ will be close to
one. We assume that in this case the adaptive lattice
Ĥ(z) will converge rapidly, say in na iterations, to a
point were the first M error terms in (3) are close to
zero. (This assumption is based on the analysis pre-
sented in the previous sections, though the analysis
has yet to be extended to the undermodelled case.)
After na iterations, then, the function now given by
Ĥ(z) + Ha(z), which is of order 2M , is approximated
by a new M order function C∗(z)/D∗(z) and the whole
process starts again. Different closed-form approxima-
tion methods can be employed for the last step, which
is directly related to model reduction problems (e.g.,

II - 443

➡ ➡



[3]). Here, we have used minimization of the equation
error ||H(z)D∗(z) − C∗(z)||2. An important point is
that the approximation procedure is not performed at
each iteration. In particular, we consider that after
the na adaptation iterations, nx iterations are used to
compute the approximation, period during which the
adapted parameters are frozen. If nx is large enough,
the per-iteration computational load of the approxi-
mation will be small. Another important point is that
after introducing the new approximation the adapted
parameters remain frozen still for nw iterations, so that
the error transient can decay.

H = C
D

� �

Ha =C∗−D∗
D∗

� �

Ĥ

D∗
D∗

�

Ha + Ĥ ≈ C
′
∗

D′
∗

�

�+

�+

���

��
���

��
��

���

�

�

�

�

��

�

u(n) y(n) e(n)

−

5. NUMERICAL RESULTS

One H(z−1) was selected from of a set of 100 ran-
domly generated fourth-order unit-norm transfer func-
tions. Its zeros are at 0.20± 1.60j and −0.051± 0.81j,
and its poles are at 0.47±0.52j and 0.78±0.081j. The
sucessive approximations (SA) algorithm, with na =
300, nx = 200 and nw = 50 was compared with the
more conventional direct form (stochastic gradient) and
lattice (simplified partial stochastic gradient) cases. As
equation error approximation was used in the SA al-
gorithm, an LMS/equation error algorithm was also
considered for comparison. For each algorithm the em-
ployed step µ was within a factor of 2 of its maximum
value. Adaptation started from the origin in all cases.
No output noise was considered in order to highlight
the previously analyzed convergence properties. The
results for one realization of the white input are in the
first figure that follows. Smoothing was employed for
better visualization. It can be seen that the proposed
algorithm converges much faster than the other cases.

Results of a longer simulation are in the second fig-
ure. For the direct form, the stochastic gradient algo-
rithm is closely approximated by the true gradient al-
gorithm given by (1) and the local approximation given
by α̃(n+L) =

[
I − µJ(α̃(n))J(α̃(n))tΣ2

]L
α̃(n), with

L = 104 (α̃(n) is only shown every 2 × 105 iterations).

For the lattice, a true gradient algorithm was not im-
plemented, due to its complexity. The local approxima-
tion, with L = 103, initially follows closely but then de-
viates from the partial gradient algorithm. This is not
unexpected, as the latter employs a biased approxima-
tion of the gradient in order to reduce computational
complexity.
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For the considered H(z), the eigenvalue spread of
Σ2 is 36 dB. The other eigenvalue spreads (in dB) and
the product bound are in the table below, calculated
at the global minimum Ĥ(z) = H(z) and at the points
reached after 5 × 104 iterations. It can be seen that
at these points the eigenvalue spread is considerably
higher than at the global minimum, which exemplifies
the greater utility of the local approximation in com-
parison with the Hessian approximation.

Ĥ = H n = 5 × 104

Form χJ χJχΣ χJΣ χJ χJχΣ χJΣ

Direct 36 72 67 49 85 79
Lattice 7 43 36 29 64 62
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