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ABSTRACT

In this article we propose a network topology estimation
strategy using unicast end-to-end packet pair delay mea-
surements that is based on mixture models for the delay co-
variances. An unsupervised learning algorithms is applied
to estimate the number of mixture components and delay
covariances. The leaf pairs are clustered by a MAP crite-
rion and passed to a hierarchical topology construction al-
gorithm to rebuild the tree. Results from an ns simulation
show that our algorithm can identify a network tree with 8
leaf nodes.

1. INTRODUCTION

It is difficult to collect parameters and measurements with
direct observations in today’s unregulated and heterogeneous
Internet environment. Statistical inference from end-to-end
measurements, called network tomography, has thus become
an important alternative approach. One of the problems of
interest is to discover the network topology. The topology
of the Internet is constantly changing due to devices going
online and offline, and the corresponding routing table up-
dates. Tools such as traceroute are usually used to ob-
tain the topology information. However, they rely on the co-
operation of internal routers, which has become less attrac-
tive as the traffic load and size of the Internet grow. Duffield
et al. proposed an inference algorithm for multicast topolo-
gies [1]. Castro et al. investigated the case in unicast net-
work and developed a method of topology discovery using
sandwich probe measurements [3].

Here we propose to use packet pair delay measurements.
The packet pair probing scheme was first used in network
tomography by Coates et al. for estimating link loss rates
[5]. Based on the delay covariances it is possible to hier-
archically cluster the leaf pairs and reconstruct the logical
tree network. Rather than attempt to directly maximize the
likelihood over the set of possible topologies, we approxi-
mate the distribution of the averaged covariance estimates as
a Gaussian mixture and find the optimal model which best

fits the data using well-developed unsupervised learning al-
gorithms. We cluster the leaf pairs according to a maximum
aposteriori (MAP) criterion and hierarchically reconstruct
the logical tree. This approach applies to packet pairs as
well as other probing methods. An ns [4] simulation is im-
plemented and the results demonstrate that our algorithm
converges rapidly to the correct topology.

2. PROBLEM FORMULATION

2.1. Framework

A logical tree � is defined by two sets : V, the set of nodes,
and E, the set of directed links. V can be expressed as the
union� � ��� ��� ���, where the root node is defined
as node 0,�� denotes the set of internal nodes and�� is the
collection of leaf nodes. The root node is assumed to have
one child node, and all the internal nodes must have at least
two descendants.

Each logical tree derives a logical grouping tree which
depicts the unique hierarchical clustering of all the pairs
of leaf nodes according to their nearest common ancestors.
More specifically, the logical grouping tree is formed by
first relabelling each internal node of the original logical
tree with the set of leaf pairs which has the internal node
as their nearest common ancestor, and then deleting the root
and leaf nodes, as well as all the links associated with them.
Let �� be the set of logical trees which have � leaf nodes,
and � �

� be the set of valid logical grouping trees with each
corresponding to a �-leaf logical tree. It is obvious from
the definition that there is a bijective mapping between ��
and � �

� .
To determine the logical grouping tree of the network,

we need the concept of Metric-Induced Network Topology
(MINT) introduced by Bestavros et al. [2], in which a met-
ric function is defined for the set of paths in a logical tree.
Coates et al. focused on a special case of similarity met-
ric which is defined on the path from the root node to the
nearest ancestor of a pair of leaf nodes [3]. Let � � de-
note the path from the root to node �, � � � � ���, which

II - 4330-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



is associated with a metric ��� . Let ���� �� be the nearest
common ancestor node of the leaf pair ��� ��. A similar-
ity metric ���� is defined by ���� � �������� . The (sim-
ilarity) metrics obey the following two properties [2, 3].
(P1)Monotonicity: ��� � ������ if �� is a proper sub-
path of �� , �� � � � � ��� (P2)Consistency: ���� � ����
if ���� �� � ���� �� for distinct leaf nodes �� �� �� �. The two
properties guarantee a logical grouping tree can be formed
using the set of similarity metrics. All the leaf node pairs
with the same metric value can be grouped into the same
node of the grouping tree using the consistency property.
The hierarchical relationship among the grouping tree nodes
can be determined by rank ordering of the metric magni-
tudes using the monotonicity property.

2.2. Packet Pair Probing Scheme

The similarity metrics used for grouping tree construction
are mainly determined by the end-to-end probing scheme
and the extracted statistics of the measured probes. Here we
propose to use a pair of closely-spaced time-stamped pack-
ets, called a probe pair, which are both sent from the root
node but routed to two different leaf nodes. In order to form
a similarity metric from the probe pair, we impose the fol-
lowing assumptions. (A1)Delay Consistency: the delays of
the two packets in a probe pair on their shared path are iden-
tical with probability 1. (A2)Spatial Independence: the
packet delays are independent over different links, either for
the same packet or among different packets (A3)Temporal
Independence and Stationarity: Delays of different pack-
ets. on the same link are identically and independently dis-
tributed (i.i.d.). Futhermore, the network topology and rout-
ing tables have to be fixed during the probing session.

The metric we propose to use is the covariance of the
end-to-end probe pair delays. Each pair of leaf nodes corre-
sponds to a binary tree rooted at node 0, called a probe tree.
We label the probe trees from 1 to

�
�

�

�
, where � � ����.

Assume that probe tree 	 has leaf nodes � and �, denoted
by ��� �� � 	. Let ��

	 � �
 �
��	� 


�
��	� be the end-to-end

delays of the �th probe pair sent along probe tree 	. The
probe pair delays � �

��	, ��
��	 and � �

��	 denote delays on
the shared path and the branch toward the left and right leaf
nodes, respectively. They are mutually independent due to
the spatial independence assumption. Note that here ���� ��
is the branching node of the paths and� �

��	 is the delay from
the root node to ���� ��. Then we have ���
 �

��	� 

�
��	� �

�����
��	 ���

��	� �
�
��	���

��	� � � �����
��	�, which de-

pends only on the nearest common ancestor ���� ��, and
hence satisfies the consistency property. The (increasing)
monotonicity is guaranteed by the positivity of the variances
and the spatial independence assumption. The end-to-end
delay of a packet is measured at the receiver by the differ-
ence between the packet time stamp and the system time
upon reception. Unlike delay tomography, the probe source,

i.e. the root node, and the receivers, i.e. the leaf nodes, do
not have to sychronize their system clocks because a con-
stant shift in delay measurement doesn’t affect the covari-
ance estimates [6].

3. FINITE MIXTURE CLUSTERING ALGORITHM

To hierarchically cluster the leaf pairs, we have to establish
a probability model of data samples as follows. Consider
a single probe tree 	. We compute an unbiased covariance
estimate for every set of �� collected sample probe pair de-
lays

������ �

�����
������������

�
������
�������

�
�����
������

����
� where

������� � �
��

�����

	�����������
�
�����
��	 , � � �� �. For every

set of �� covariance estimates, we calculate the average

����������� �

�����
�������������

�����
��

����� �
�
� �����

���
���
��

�
�

where in the last term the central limit theorm is involved
on the sum of i.i.d. samples ���������� . With a large ��, the
averaged covariance estimates are approximately Gaussian
distributed with mean � ���� �

�� and variance ��� ���, where
��� is the variance of ������ . Finally a total of �� such covari-
ance averages are collected at probe tree 	, i.e.,
�� � ���������

��

����
.

Let �� denote the set of probe trees which share the
same branching node �. The Gaussian distributions of all
��, 	 � �� have the same mean but not the same vari-
ance. However, as�� increases the differences among those
variances decrease linearly. When �� is large enough, the
variance differences are negligible and the � �’s approxi-
mately admit the same distribution �

�
��� �

�
�

�
, where �� �

� �����
�� for each 	 � ��. If we consider the whole data

pool � � ����, the samples can be viewed as i.i.d. realiza-
tions of a finite Gaussian mixture
���� �

�
����

����

�	��
�
�
����� �

�
�

�
� Note that this is an un-

constrained model for S since we do not impose any topo-
logical constraints on the network. Each mixture compo-
nent corresponds to an internal node of the logical tree. The
number of the components is upper bounded by �� �, and
lower bounded by 1.

4. MIXTURE MODEL ESTIMATION AND
TOPOLOGY CONSTRUCTION

Finite mixture models are widely used in data clustering
and pattern recognition problems [7]. Estimation of param-
eters in a mixture model includes model order selection,
i.e., determination of the number of mixture components,
and inference of the parameters. Figueiredo and Jain [7]
proposed an EM implementation with a minimum-message-
length(MML) type of penalty on model over-estimation. The
algorithm starts with ���� components, where ���� is se-

II - 434

➡ ➡



lected such that each true component has a good possibility
to be well represented at random initialization. A mixture
component is either kept or removed at each iteration ac-
cording to a criterion derived from the MML penalty. After
convergence, the component with the least mixture prob-
ability is removed and the algorithm is re-initialized with
the remained components. This process is repeated until
the lowest number of components is reached. The estimate
which converges to the highest penalized likelihood gives
the MML covariance estimates.

Suppose the set of � convergent estimates is

����� ��� � ������ ����� ��
�

���
���
���

�����, where ��� denotes
the model order, ��� is the set of parameters, and each esti-
mate � corresponds to a Gaussian mixture ������ �����

���
����	

�
�� ����� ��

�

��

�
. The parameter sets of the ���

components in ��� are sorted in non-increasing order of the
means ������, and the � estimates are also sorted in de-
creasing order of their optimality. To classify � � into one of
the components, we apply a MAP rule
�
���� � �����	

�����������

��� �����

� �����	
�����������

�

�� ���� �

���

���

�

��	

�
������ ����� ��

�

��

�
� 
�� �����

�

����
��

�

We need the following definitions to hierarchically re-
construct a logical tree. A supernode ���� is a virtual node
comprises the subtree rooted at internal node �. A leaf node
� is included in ���� if it is a leaf node of the correspond-
ing subtree, denoted by � � ����. Supernodes ����� and
����� are connected through mixture component m if there
exists a �� � ����� and a �� � ����� such that �
���� � 

for ���� ��� � � , denoted by �����
�
�� �����. Similarly,

we define �
�
�� ���� for � being a leaf node not included

in ����. Supernodes ����� and ����� are fully connected
through mixture component m if for every �� � ����� and
�� � �����, �
���� �  for ���� ��� � � , denoted by
�����

�
�	 �����. Similarly, we define �

�
�	 ���� for � be-

ing a leaf node not included in ����. To successfully include
the leaf pairs associated with a new component  into the
tree we have to verify whether all the existing supernodes
and the new leaf nodes which are connected through  to
some other supernodes or new leaf nodes are also fully con-
nected to each other. The complete topology construction
algorithm is illustrated in Table 1. It starts from the op-
timal Gaussian mixture estimate. If it doesn’t generate a
valid logical tree, then it goes to the next optimal estimate,
until a valid topology is found. This is a sub-optimal algo-
rithm since it does not seek optimal constrained parameter
values when a mixture model estimate and its correspond-
ing leaf node clustering do not produce a valid tree, but it
guarantees in the worst case a logic tree associated with a
one-component mixture will be generated, in which every
leaf node directly connects to the root node’s descendant.
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Fig. 1. ns simulation network.
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Fig. 2. ns simulation results.

5. COMPUTER SIMULATION

We conducted an ns simulation on the network shown in
Fig. 1. Each probe is a 40-byte UDP packet. Probe pairs
are sent from node 0 to traverse each probe tree in a round-
robin fashion with interprobing time 500�s. There are a
total of 72 constant-bit-rate UDP background streams with
random departure times, and 144 TCP background flows
with Pareto On-Off distribution. We collect	�
	�
	� �
�� 
 �� 
 �� � ����� packet pairs for each probe tree.
They are a lot of packets and are only presented here for
proof of concept. We start the algorithm with ��	
 � ��
components. Fig. 2 (a) shows the optimal Gaussian mixture
estimate and (b) shows the convergence curve, where the
solid lines indicate the iterations at which a component is
automatically removed and the dashed lines show the algo-
rithm converges and the component with the least mixture
probability is then removed manually. The asterisk points
at the convergent iteration of the optimal estimate. The al-
gorithm converges very fast in less than 300 iterations, and
produces the MAP clustering in Table 2, which reconstructs
the correct logical tree topology.

6. CONCLUSION AND FUTURE WORKS

In this paper we propose a method of network topology
estimation using end-to-end packet pair delays. We adopt
packet pair delay covariance as the similarity metric, and
establish a Gaussian mixture model for the averaged co-
variance estimates. By applying an unsupervised learning
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Input: �� ,
�
���� ���� ���

��
���

, Output: � � �����

�� �, �����	� �
while ��� � 
� � ������	 � ��� do

��� � �,�� � �,�� � �, �� �, �� �, ����� �

while ��� � ���� � ������� do

���� �
�
�� � ��� ��� � ��� � �������� ���� ��� � � ������ � �

�

��
�
��� � �� �

�
���� � �������� ���

�
�� ���

�
	
�
�� � ���� �

�
�� ���

��

if
�
���� �� � ���� � ���� ��� � � ������ 
� �

�
	
�
������ ���� � � �

�
����

�
� ����

��
	�

�� � ���� � ��� � � �
�
�

�
� ���

��
then ����� �

else create a new internal node ��,�� � �� � ����
�� � � ����� �� � � � ����� � ����� �� � ��� � ��,�� � �� � ��������,
��� � ��� ����� , �� �� �

end if
end while
if ������ then

�� ��� ��� ��� , �� � �
�
��� ��	�

�
�

, � � �����, �����	� �

end if
�� �� �

end while

Table 1. Topology construction algorithm.

� ����������� �	�� �
 � ������ � �� ��� �� � ��
1 1.5 [7,8]
2 1.14 [5,6]
3 0.845 [4,5], [4,6], [4,7], [4,8], [5,7], [5,8], [6,7], [6,8]
4 0.291 [2,3]
5 0.105 [1,3], [1,2]
6 0.042 [1,4], [1,5], [1,6], [1,7], [1,8], [2,4], [2,5], [2,6], [2,7], [2,8], [3,4], [3,5], [3,6], [3,7], [3,8]

Table 2. MAP clustering for the optimal mixture estimate (� � �).

algorithm for finite mixtures, we select the mixture model
candidates and estimate their parameters. The pairs of leaf
nodes are clustered with a MAP criterion, and used as the
input to our topology construction algorithm. ns simula-
tion results demonstrate the fast and accurate performance
of our methodology.

Future work will focus on developing a topology con-
strained algorithm to incorporate topological restrictions in
model selection and estimation. We also would like to im-
plement our mixture model algorithm to other probing meth-
ods, such as the mean delays of the sandwich probes in [3].
Finally, we are in the process of collecting real network data
to evaluate the performance of our algorithm in a practical
environment.
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