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ABSTRACT

Switching dynamic linear models are commonly used meth-
ods to describe change in an evolving time series, where
switching ARIMA model is a special case. Short-term fore-
casting of traffic flows is an essential part of Intelligent Traf-
fic Systems (ITS). In this paper, we apply switching ARIMA
model to traffic flow series. We have observed that the con-
ventional switching model is inappropriate to describe the
pattern changing. Thus the variable of duration is intro-
duced and we use the sigmoid function to describe the in-
fluence of duration to the transition probability of the pat-
terns. Based on the switching ARIMA model, the forecast-
ing algorithm is presented. We apply the proposed model to
the real data obtained from UTC/SCOOT systems in Traffic
Management Bureau of Beijing. The experiments show that
our proposed model is applicable and effective.

1. INTRODUCTION

One way of modeling change in an evolving time series is
by assuming that the dynamics of some underlying model
changes discontinuously at certain undetermined points in
time [1] [2]. Switching model introduces a hidden variable
(also called hidden state) to point out which model the se-
ries obeys. The hidden state is also modeled as a stochastic
process. The model parameters of the time series are related
to the hidden state. Using St and Zt to denote the hidden
state and the value of the time series at time t, respectively,
the switching model can be described by the following two
probability distributions.

State transition probability:

p(St+1|St, · · · , S0) (1)

The probability of Zt given its previous values and the
current hidden state:

p(Zt|Zt−1, · · · , Z0, St) (2)

Given the state St, the time series {Zt} is usually as-
sumed to be dynamic linear model, a general form that in-
cludes ARIMA and classical regression models as special
cases.

Short-term forecasting of traffic flows is an essential part
of Intelligent Traffic Systems (ITS). A considerable amount
of effort has been expended on this problem and some mod-
els are proposed, such as random walk, historical average,

informed historical average [3], artificial neural networks
[4], Kalman filter theory [5], nonparametric regression (K-
nearest neighbor, non-linear regression) [6] and ARIMA
based methods (Seasonal ARIMA [3] and KARIMA [7].

Autoregressive integrated moving average (ARIMA) pro-
cess is a common used model for time series analysis. There
have been great attempts to use ARIMA model for short-
term traffic flow forecasting. ARIMA model assumes the
traffic flow series can be made stationary by differencing. In
most of the studies, the investigated models were ARIMA(p,
1, q). Since a first difference will not yield a stationary
transformation for traffic flow series [3], it would not have
been surprising if these studies had reported inferior fore-
casting performance for the ARIMA models. To overcome
the non-stationarity of the traffic flow series, many varia-
tions were proposed. Billy M. Williams [3] noticed the pe-
riodicity of the traffic flow series and assumed the traffic
flow series can be stationary after normal and seasonal dif-
ferencing, so he introduced seasonal ARIMA to model the
traffic flow series. Another remedy to the basic ARIMA,
named KARIMA, was proposed by Der Voot et al [7]. The
“K” in the model name represents the method chosen for the
cluster layer, namely a type of neural network known as a
Kohonen self-organizing map. In this model, Kohonen map
was firstly applied to cluster the traffic flow data. Then, a
separate ARIMA(p,0,q) model was fitted to each cluster.
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Fig. 1. Traffic flow series with two days

In this paper, a novel model, named switching ARIMA,
is proposed to enhance the basic ARIMA model. For the
data set obtained from UTC/SCOOT systems in Beijing,
see Figure(1), we notice that the traffic flow series has sev-
eral patterns, such as ascending pattern, descending pattern,
peak pattern and bottom pattern. It is reasonable to con-
struct a separate model for each of the patterns. In this pa-
per we fit a separate ARIMA model to each pattern. We
also notice that patterns change with time. Switching model
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can describe the changing of pattern very well. So switch-
ing ARIMA model is introduced to describe the traffic flow
series. Based on the switching ARIMA model, we then
present the forecasting algorithm for the traffic flow. We
apply the proposed model to the real data obtained from
UTC/SCOOT systems in Traffic Management Bureau of Bei-
jing. The experiments show that our proposed model is ap-
plicable and effective.

The remainder of this paper is organized as follows. In
section 2, we use switching ARIMA model to describe the
traffic flow series. To make the switching model suitable
to the traffic flow series, we introduce the variable of dura-
tion. In section 3, we give the forecasting algorithm based
on switching ARIMA. In section 4, a case study has verified
the effectiveness and applicability of the proposed model
with real traffic data obtained from UTC/SCOOT System in
Beijing. Finally, conclusions are drawn and comments for
further research work are given.

2. SWITCHING ARIMA MODEL FOR TRAFFIC
FLOW SERIES

Just as we have mentioned in the section of introduction, the
traffic flow series has some patterns and a single ARIMA
model is not sufficient to describe the traffic flow series.
Here the patterns are the hidden states defined in switch-
ing model. We fit a separate ARIMA model to each pattern
of the traffic flow and apply the transition of hidden states
to describe pattern changing. Usually, the hidden state is
assumed to be a time-invariant discrete one-order Markov
process. However, this assumption is inappropriate to the
traffic flow series. For a time-invariant discrete one-order
Markov process, when the current state is given, the next
state is independent to its previous states and the duration
of the current state will not influence the transition proba-
bility from the current state to the next state. However, we
notice that the patterns of traffic flow will last for some du-
ration. When the duration is short, the state is less likely to
change to other states. And when the duration is longer, the
state is more likely to change to other states. We then in-
troduce the variable of duration and use sigmoid function to
model its influence to the transition probability to overcome
this weakness of the conventional switching model.

Denote the traffic pattern at time t as St, which belongs
to the set of M discrete symbols {1, 2, . . . , M}. In this
paper M is set to be 4. The 4 states correspond to bot-
tom pattern, ascending pattern, peak pattern and descend-
ing pattern, respectively. It has been noticed that with time
evolving patterns can only change from bottom pattern to
ascending pattern, from ascending pattern to peak pattern,
from peak pattern to descending pattern, or from descend-
ing pattern to bottom pattern. Symbol lSt

is used to repre-
sent the duration of state St. We assume the state transition
probability has the following form,

p(St+1 = j|St = i at duration li) = aij (li) (3)

where aij (li)is the matrix A (l)’s element at row i and col-
umn j,

A(l) =

⎡
⎢⎣

1 − g1(l1), g1(l1), 0, 0
0, 1 − g2(l2), g2(l2), 0
0, 0, 1 − g3(l3), g3(l3)
g4(l4), 0, 0, 1 − g4(l4)

⎤
⎥⎦

where gi(li) = sigmoid
(

li−µi

σi

)
, for i=1, . . . , 4.

sigmoid(x) is a sigmoid function [9], as shown in Figure(2).
The parameters µi and σi control mean and standard vari-
ance of St’s duration. This sigmoid function describes the
characteristic of the state transition probability for the traffic
flow series.

Fig. 2. The curve of the sigmoid function

Let {Xt} denote the traffic flow series and {Yt} is the
transformed series after differencing the original time series
d times. {Yt} can be easily reverted to {Xt}, so in the fol-
lowing part we primarily confine our concern on {Yt}. To
sum up, the traffic flow series can be described as follows:

1. Equation (3) for the state process

2. Given the current state St, {Yt} can be modeled as

Yt =

p�

n=1

Φn (St) Yt−n +

q�

m=1

Θm (St) et−m + et (4)

where the symbol St in the parentheses means that
the value of the parameters Φn and Θm is related to
the current state.

3. FORCASTING ALGORITHM BASED ON
SWITCHING ARIMA

For classical ARIMA, given the current and previous val-
ues of the transformed traffic flow series {Yt}, the optimal
forecasting of Yt+1 is,

Ŷt+1 =
p∑

n=1

ΦnYt+1−n +
q∑

m=1

Θmet+1−m (5)

For switching ARIMA, if the hidden state St+1 is known
beforehand, the forecasting will be exactly in the same way
as the classical ARIMA. We write the forecasting of Yt+1

with the known St+1 as

Ŷt+1|St+1 =

p�

n=1

Φn (St+1) Yt+1−n +

q�

m=1

Θm (St+1) et+1−m

Unfortunately, in general, the hidden State St+1 isn’t
known beforehand. However, given the current and previ-
ous values of the time series, the probability of the hidden
state can be calculated, so the forecasting with switching
ARIMA can be written as,
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Ŷt+1 =
M∑

St+1=1

Ŷt+1|St+1p (St+1|Yt:0, et:0) (6)

where:

p (St+1|Yt:0, et:0)

=
M∑

St=1

L∑
lSt=1

p (St+1|St, lSt)(lSt |Yt:0, et:0)p (St|Yt:0, et:0)

(7)

p(St|Yt:0, et:0)= p(Yt|Yt−1:0,et−1:0,St)p(St|Yt−1:0,et−1:0)
M�

St=1
p(Yt|Yt−1:0,et−1:0,St)p(St|Yt−1:0,et−1:0)

(8)
p (lSt = d|Yt:0, et:0)

=

�������
������

p
�
lSt−1 = d − 1|Yt−1:0, et−1:0

�
ifd ≥ 2

M�
St−1=1
St−1 �=St

L�
lSt−1=1

p
�
St|St−1, lSt−1

�
p
�
lSt−1 |Yt−1:0, et−1:0

�

× p (St−1|Yt−1:0, et−1:0) ifd = 1
(9)

After the new observation Yt+1 arrives, the error of fore-
casting can be calculated as,

et+1 = Yt+1 − Ŷt+1 (10)

For the convenience of computing, it is usually assumed
that maximum duration of states is L. For the complete-
ness of the forecasting algorithm, the initial values of Y0,
e0, p (S0|Y0, e0) and p (lS0 |Y0, e0) should be given before
the starting of the forecasting algorithm. To sum up, we
present the algorithm procedure as in Table(1).

At time t=0,
Step 0: Initialization
Initialize Y0, e0, p (S0|Y0, e0) and p (lS0 |Y0, e0)
Set t=1
At time t ≥ 1,
Step 1: Calculate the posterior probability of hidden states
Calculatep (lSt = i|Yt, ..., Y0, et, ...e0) according to equation
(9)
Calculate p (St|Yt, ..., Y0, et, ...e0) according to equation (8)
Calculate p (St+1|Yt, ..., Y0, et, ...e0) according to equation
(7)
Step 2: Forecasting

CalculateŶt+1 according to equation (6)
Calculate et+1 according to equation (10)
Set t ← t + 1 and go to Step 1

Table 1. The procedure of forecasting algorithm based on
switching ARIMA

4. CASE STUDY

4.1. Data Description

The data used in this paper were obtained from the UTC/SC
OOT system in Traffic Management Bureau of Beijing. The

data are from Mar. 1 to Mar. 31, 2002. Some experiments
have been done with the data from different sites and the
experiment results show good performance of our method.
Here, we just randomly select one of them to show the re-
sults. The raw data at Yuetanbei Street is selected. The
discrete time series interval for the data is 15 minutes and
the series length for each day is 96. Due to the malfunc-
tion of the detector or transmitter, 181 values are missing
and we just remove the days including the missing values.
Then, 26 days’ data remain. The 26 data sets are shown in
Figure(3). The former 20 days’ data are used to train the
model and residual data of 6 days are employed to test the
effectiveness of the proposed model.
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Fig. 3. Traffic flow vs. time plot for all 26 data sets

4.2. Experiment Results

To forecast the traffic flow, we should first learn the model
parameters. The parameters include two parts, the parame-
ters in switching model and the parameters in ARIMA model.
For the parameters in the switching model, we should spec-
ify µi and σi. From the meaning of µi andσi, we can di-
rectly set their values as shown in Table(2). For the parame-
ters in ARIMA models, we use the methods described in (6)
to estimate the parameters of each pattern’s ARIMA model.

i = 1 i = 2 i = 3 i = 4
µi 10 6 40 40
σi 4 4 4 4

Table 2. The parameters in switching model

After the parameters are learned from the training set,
we apply the forecasting algorithm as described in section 3
to forecast the traffic flow in the testing set. Two of the six
days of predicted traffic flow vs. real traffic flow is shown
in Figure(4). The error distribution of forecasts is shown
in Figure(5). From these two figures, we can see that our
proposed algorithm can forecast the traffic flow pretty well
and most of the errors concentrate on the range between -
5% and 5%.
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Fig. 4. Predicted traffic flow vs. real traffic flow
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Fig. 5. Error distribution of forecasts

4.3. Comparisons with other models

Three other models are used to compare the performance of
our model. For a full coverage of these three models the
reader is referred to [3].

The results are compared in terms of two measures of
performance, the mean root square error (MRSE) and the
mean absolute relative error (MARE). The results of the
comparison are given in Table(3). The results show that
the proposed model outperforms the other three models in
terms of mean root square error (MRSE) and the mean ab-
solute relative error (MARE).

MRSE MARE
Random walk 118.9673 11.56%

Historical average 211.3237 18.42%
Informed historical average 108.2020 11.19%

Our Proposed Model 105.2093 9.95%

Table 3. Comparison of performance of four models

5. CONCLUSION

In this paper, we noticed the traffic flow has several pat-
terns. The patterns have different characteristics. We use
a separate ARIMA model to describe each of the patterns.
We also noticed the patterns change with time. Thus we
proposed the switching ARIMA model to describe the traf-
fic flow series. Since the conventional switching model is

inappropriate to describe the pattern changing of the traffic
flow, we introduce the variable of duration and use the sig-
moid function to describe duration’s influence to the tran-
sition probability of the patterns. Based on our proposed
switching ARIMA model, the forecasting algorithm for the
traffic flow series is presented. A case study from Beijing
has shown the applicability and the effectiveness of our pro-
posed model.

However, there are still several topics to be further re-
searched. Firstly, in this paper, we set parameters of the
switching model manually. In practice, it will be a toil-
some task. So, how to estimate these parameters automati-
cally? Secondly, equation (3) is used to describe the switch-
ing model. Is it the best way? Thirdly, we use ARIMA to
describe each of the patterns in traffic flow. What will it be
if we use other models? Fourthly, we only utilize the data at
a single site to forecast. Combining the other sites will en-
hance the performance of the proposed model. Lastly, the
study of the relationship between our proposed model and
other existing models will also be an interesting issue.
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