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ABSTRACT

It has been well established by now that high-speed wireline traffic
exhibits self-similar behavior. In this paper we study the propaga-
tion of self-similarity as the wireline traffic is sent through a gate-
way to the wireless network. We employ a commonly used model
for buffering and repacking performed at the gateway, and study
the statistics of the output traffic. Both analysis and simulations
reveal that the buffer system can produce traffic that has different
degree of self-similarity as compared to the incoming traffic, or
even traffic that is no longer self-similar.

1. INTRODUCTION

With the increasing demand for wireless internet access and the
fast evolution of wireless techniques, (e.g., third generation sys-
tems and wireless LAN), high-speed services are provided via
wireless networks. Over the past decade it has been established
that wireline traffic generated by multimedia applications has dis-
tinctly different characteristics from traditional circuit-switched
voice traffic. In particular, it exhibits self-similarity and burstiness
[8]. Several models have been proposed to capture the aforemen-
tioned characteristics [7], [9], [10], [11], [2]. Self-similarity im-
plies a non-trivial structure for traffic, which can be exploited for
data analysis. Recently, there have been some works suggesting
that wireless traffic may also exhibit self-similarity [6]. It is true
that recent advances in wireless networks can enable high speeds,
and it is also true that both wireless and wireline users need to ac-
cess the same multimedia applications. However, does this mean
that the wireless traffic will have the same characteristics as the
wireline traffic? To answer this question, we here provide a study
of the effect on self-similarity of the buffering which is performed
at the gateway that interconnects the wireline to the wireless net-
work. In general, packet sizes are different over a heterogeneous
collection of networks, and the gateway should provide a means
by which packets can be fragmented and reassembled [4]. Com-
pared to the wireline case, transmission over wireless networks is
susceptible to the fading nature of the wireless link. To improve
throughput, automatic repeat request (ARQ) and/or forward error
correction (FEC) are incorporated to wireless data transmission.
A two-state Markovian channel model was proposed in [3] for the
radio channel that incorporated ARQ and FEC.

2. SYSTEM MODEL

Let us consider the buffering system of Fig. 1 that serves a single
user. The traffic stream from the wireline network is first unpacked
into bit streams, denoted as S(t). The system repacks those bits
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into new packets and sends them via the wireless link. Let the
outgoing packet traffic be denoted by T (t). The wireless channel
is here modelled based on the two-state Markovian model of [3].
According to this model, the channel strictly alternates between
good and bad states, which correspond to two deterministic ser-
vice rates: cg during good states and cb during bad states. The pe-
riods of both states are independently and identically exponential
distributed with means 1/β and 1/γ respectively. Let us assume
that S(t) follows the model of [11], i.e., it is an ON/OFF process
with Pareto distributed ON-/OFF-state durations, denoted here by
{XS,n} and {YS,n}, respectively, and cut-off Pareto distributed
ON-state rates, denoted here by {An} (n = 1, 2, ...). The com-
plementary distribution function (CDF) of the Pareto distribution
is:

F̄ (x; α, K) = P (X ≥ x) =

{
(K

x
)α, x ≥ K,

1, x < K,
(1)

where K is a positive constant and 0 < α < 2. The survival
function of a cut-off Pareto distribution is:

F̄L(x; α, K) = P (X ≥ x)

= F̄ (x; α, K)(1 − u(x − L))

=

⎧⎨
⎩

(K
x

)α, K ≤ x ≤ L,
1, x < K
0, x > L

(2)

where u(.) is the unit step function, and L represents a rate limit
imposed to the wireline user. Traffic streams S(t) from one or
more connections are fed into a finite buffer of size B, until the
buffer overflows, in which case the excess data are discarded. Let
us assume that the service time is time-slotted with time slot de-
noted by τ . In the sequel we will use the notation S(n), T (n)
instead of S(t), T (t), where n is the slot index. During each time
slot, at most one packet can leave buffer. Since the incoming traf-
fic is assumed to be continuous bit flow, the server needs to repack
bits into equal-sized packets and send them out via wireless link.
Let P denote the packet size. It is assumed that P = c, where c is
the instant channel capacity within one time slot, which alternates
between cg and cb. For the packing operation, we here consider
the following model:

• Server Model: If the data in the buffer is less than the
packet size, the server takes no action and waits until there
is enough data to form a packet.
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3. PERFORMANCE ANALYSIS OF THE UNDERLYING
BUFFER SYSTEM

Considering a slow-varying wireless channel, the alternation of
channel states is slower than that of the incoming traffic S(n). This
implies that the channel rate of the buffering system can be taken
as constant within several ON-/OFF-periods of S(n). Thus, we
can first study the simpler case where the service rate of the buffer
system is constant and equal to c. The operation of the gateway
can be approximated as the statistical multiplexing of two buffer
systems: one has service rate cg and the other has service rate cb,
both system sharing the same buffer with finite buffer size B as
shown in Fig. 1. Let us view T (n) as an ON/OFF process. T (n)
is in ON state if T (n) > 0, and is in OFF state if T (n) = 0. Let
XT,n, YT,n (n=1,2,...) denote the ON and OFF durations of T (n).
We next compute the distributions of XT,n and YT,n based on the
statistics of S(n). Let b(n) denote the buffer content at the slot n,
with initial value b(0) = 0. Based on our server model, T (n) and
b(n) are updated on a slot-by-slot basis as follows:

T (n) =

{
c, if S(n) + b(n − 1) ≥ c
0, if S(n) + b(n − 1) < c

(3)

b(n) =

⎧⎪⎨
⎪⎩

< S(n) + b(n − 1) − c, 0 > ∧B,
if S(n) + b(n − 1) ≥ c

< S(n) + b(n − 1), 0 > ∧B,
if S(n) + b(n − 1) < c

(4)

where < α, β >= max(α, β) and α ∧ β = min(α, β). Both
update equations guarantee that the buffer content can only take
value within the range [0, B]. Let Nj denote the so-called regen-
eration point of S(N), i.e., the beginning of the jth ON-period of
S(n). It holds: Nj =

∑j−1
i=1 XS,i +

∑j−1
i=1 YS,i. We next study

two cases, one for B > c and the other for B = c. We should note
that we do not consider the case B < c as it would be impractical
for real networks.
Buffering system with B = c Unless the buffer is full (i.e. b(n) =
B), the amount of data in the buffer isn’t enough to form a packet,
so no packet will leave buffer. During all OFF-periods of S(n),
it holds that T (n) = 0. During the ON-periods of S(n), as
new bits come into the buffer with rates Aj (j=1,2,...), b(n) will
change according to (4), and thus T (n) will change according to
(3). The buffer system will not keep one-to-one mapping between
XS and XT , YS and YT . Instead, the buffering model consid-
ered here combines some consecutive ON-/OFF-periods of S(n)

as {XS,i}j+M−1
i=j and {YS,i}j+M−1

i=j−1 to form a bigger OFF-period

YT,k, i.e., YT,k = Yj−1 +
∑j+M−1

i=j (XS,j + YS,j). We will refer
to such action as combining action. We next consider the following
cases:

• Case 1: For all Aj such that Aj ≥ c. Let us define two
sets: D1 = {j : Aj > c} and D2 = {j : Aj = c}.
For n ∈ [Nj , Nj +Xj) (where j ∈ D1

⋃
D2), i.e. the jth

ON-period of S(n) belonging to case 1, we have b(n−1)+
S(n) = b(n − 1) + Aj > c, and thus T (n) will also be in
ON state. Let us denote the ON (OFF) durations belonging
to case 1 by X1

T,k (Y 1
T,k) (k = 1, 2, ...). In this case we

have X1
T,k = XS,j (j ∈ D1

⋃
D2).

• Case 2: Aj < c for all Aj . Let us define the set D3 =
{j : Aj < c}. Let us consider the buffer content, b(n), at
the regeneration points Nj . For infinite buffer, the station-
ary distribution of b(n) is asymptotically heavy-tailed with

tail index α1 − 1 (where α1 is the tail index of ON dura-
tions of S(n)) [11]. For a finite buffer fed by self-similar
traffic, the result is rather intractable. Since in this subsec-
tion we assume single buffer, the ON/OFF duration of T (n)
can change by at most 1 time slot at a time. While XS,j

and YS,j are Pareto distributed and might take very large
value with nontrivial probability, for single buffer, b(n) has
small impact on the distributions of XT and YT and can
be ignored. Thus we can approximate eq. (3) by setting
b(n) = 0 for all n, i.e.,

T (n) =

{
c S(n) ≥ c
0 S(n) < c

(5)

In the simulations section we will provide some results in
support of the above approximation. Since ∀j ∈ D3, we
have Aj < c, T (n) = 0 within that period. In other
words, the underlying buffer system virtually converts the
jth ON-period of S(n) into an OFF- period for T (n),
which results in T (n) staying in OFF state for a larger du-
ration, i.e., YS,j−1 + XS,j + YS,j . The combining action
can be applied to more ON-/OFF-periods of S(n) to pro-
duce a bigger OFF-period in T (n), i.e., Y 2

T,k = YS,j−1 +∑j+M−1
i=j (XS,j + YS,j) given that j, j + 1, ..., j + M − 1

all ∈ D3, i.e. M consecutive ON-periods of S(n) which
satisfy that Ai < c (i = j, ..., jM − 1). So that P (M =
m) = P (A < c)mP (A > c)2.

The complementary distribution functions (CDF) of XT and YT

can be obtained as follows:

P (XT > x) = P (XT > x|A ≥ c)P (A ≥ c)

+ P (XT > x|A < c)P (A < c) (6)

and

P (YT > y) = P (YT > y|A ≥ c)P (A ≥ c)

+ P (YT > y|A < c)P (A < c) (7)

Based on our assumptions, the ON-state rate A is cut-off Pareto
distributed according to F̄L(x; α, K) with parameters {αA, KA,
L}where αA ∈ (1, 2). Thus, P (A<c)

P (A>c)
= 1

P (A>c)
−1 > 10α−1 >

9 given that 10KA1 < c < L. The ratio P (A<c)
P (A>c)

becomes even
larger if c > L. So we conclude that P (YT > y|A < c)P (A < c)
is the dominant term in (7), while P (XT > x|A ≥ c)P (A ≥ c)
is the dominant term in (6). Based on the above, we have

P (XT > x) ≈ P (XS > x) (8)

and

P (YT > y) ≈
∞∑

m=1

P
( m∑

i=1

XS,i +

m+1∑
i=1

YS,i > y
)

× P (A < c)mP (A > c)2

(9)

Buffering system with B > c When B > c, the previous buffer
content b(n − 1) has a significant effect on the underlying buffer
system. As already stated, the distribution of buffer content b(n)
for a finite buffer system is too complicated to derive in closed
form. Instead of detailed derivations, we will next provide some
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intuitive arguments on the behavior of the tails of distributions
of XT and YT . In the previous subsection, we approximated
P (XT > x) and P (YT > y) with their dominant terms, and
so we will focus on the case that all Aj < c due to the same ap-
proximation. Let us consider that S(n) is in the jth ON-period,
i.e. n ∈ [Nj , Nj + XS,j). Then, if b(Nj) + Aj < c, the previ-
ous j − 1th OFF-period is extended into this ON-period by excess
value δ, for which it holds δ = � c−b(Nj)

Aj
� ∧ XS,j . Of course, if

δ reaches XS,j , two consecutive OFF-periods will be connected
by this extension δ due to the same combining action as discussed
above. If b(Nj) + Aj < c but δ < Xj , or b(Nj) + Aj > c,
T (n) might alternate between small ON-/OFF-periods within this
interval. The buffer system splits a large ON-period of S(n) into
several small ON-/OFF-periods of T (n), an action that will be re-
ferred to as textitsplitting action. Such action results into XT and
YT having a larger portion of small values compared with XS and
YS respectively. This implies that XT and YT will have a heavier
tail than XS and YS . In summary, the buffer system considered
here takes both combining and splitting action on YT , but with op-
posite effects. This can lead to a distribution for YT that is similar
to that of YS . On the other hand, for XT , only splitting action
takes effect, thus XT has heavier tail than XS . Although we do
not have an rigorous analysis of the above, simulation results to be
provided in the simulations section do support our conclusion.

4. SIMULATION RESULTS

In this section, we provide simulations to support the claim that
the gateway can influence the statistics of ON-/OFF-periods of
self-similar traffic. We first generated the incoming traffic S(n)
based on the rated-limited EAFRP model, where the ON- and
OFF-durations were Pareto distributed with (α1 = 1.6, K1 = 1)
and (α0 = 1.4, K0 = 1), respectively. The data rate during
the ON-states was taken from a cut-off Pareto distribution, i.e.
fL(x; α, K) with (L = 104.64,αA = 1.19, KA = 48) and
the time unit τ was taken as τ = 0.01sec. The service rates
of the wireless channel were alternated between the two states
cg = 5000 and cb = 500, with independently exponentially
distributed state durations, where the mean of good states was
1/β = 0.1sec and that of bad states was 1/γ = 0.0333sec. The
buffer size was taken B = 5000. So, for channel cg , the buffer-
ing system satisfies B = c, while for channel rate cb the system
satisfies B > c. In Section 3, we assumed that for a single buffer
system the value of b(n) can be ignored with minor error. To ver-
ify this assumption, the simulation results are shown in Fig. 2.
The “real traffic” curve in that figure corresponds to T (n) obtained
based on eq. (3) and (4), while the curve denoted as “approxima-
tion” is the traffic T ′(n) obtained using eq. (5). One can see that
the approximation holds well. Based on this assumption, we con-
cluded that OFF-period durations of T (n) (i.e. YT ) have a heavier
tail compared with those of S(n), and the complementary distri-
bution function (CDF) of YT can be approximated as (9) where
the corresponding buffer system satisfies B = c. The ON dura-
tions of T (n) (i.e. XT ) has the same CDF as S(n). To support
this, the log-log CDFs (LLCD) of ON-/OFF-periods duration of
T (n) (solid line), S(n) (dashed line) were plotted in the left/right
column of Fig. 3 for B = c (c = 5000, B = 5000). The ana-
lytic approximation of (9) is shown as the dotted-circle curve in the
right part of Fig. 3. For the case B = 5000 > c = 500, the log-
log CDFs (LLCD) of ON-/OFF-periods durations of T (n) (solid
line), S(n) (dashed line) are plotted in the left/right column of Fig.

4. Next, we passed S(n) through the buffering system whose ser-
vice rate alternating between cg and cb. The LLCD of ON-/OFF-
durations of S(n) and T (n) are plotted in Fig. 5. In this figure,
the tail index of ON- and OFF-durations distributions of T (n) are
αON ≈ 3.1 and αON ≈ 3.8 respectively, i.e. both are larger than
2! The Hurst parameter H has been suggested in [5] as a measure
of the degree of self-similarity of traffic stream. Since T (n) can be
treated as an ON/OFF process with finite reward (limited to chan-
nel rate c), H can be calculated as[9]: H = 3−min(αON ,αOF F )

2
.

If both αON and αOFF are larger than 2, then H < 0.5, which
means the underlying process T (n) is not self-similar. In other
word, T (n) is not a self-similar process while S(n) is self-similar,
i.e., the underlying buffering system can influence the degree of
self-similarity of traffic and even result in loss of self-similarity
when cb < B = cg .

5. CONCLUSION

The proposed model can help us to understand and study the ef-
fect of the gateway that feeds wireline traffic into the wireless net-
work. The analysis presented here suggests that the gateway can
change the degree of self-similarity of traffic due to its reassem-
bling and repacking operations on the incoming self-similar traffic.
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Fig. 1. The buffering system used for analyzing the outgoing traf-
fic.
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Fig. 2. The LLCDs of ON-periods (left) and OFF-periods (right)
corresponding to traffic obtained based on the approximation of
(5) (dashed line), and to outgoing process T (n) obtained via (3),
(4) (solid line). The underlying buffering system has constant rate
c and satisfies that B = c.
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Fig. 3. The comparisons of LLCD of ON-periods (left) and OFF-
periods (right) corresponding to incoming process S(n) (dashed
line) and outgoing process T (n) (solid line). Also the analytic
result of YT obtained via (9) is shown (dotted-circle) in the right
part of figure. The underlying system satisfies that B = cg .
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Fig. 4. The comparisons of LLCD of ON-periods (left) and OFF-
periods (right) corresponding to incoming process S(n) (dashed
line) and outgoing process T (n) (solid line). The underlying
buffering system has constant rate cb and satisfies that B > cb.
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Fig. 5. The comparisons of LLCD of ON-periods (left) and OFF-
periods (right) associating with incoming process S(n) (dashed
line) and outgoing process T (n) (solid line) where T (n) was ob-
tained by passing S(n) through the buffering system whose ser-
vice rate alternating between cg and cb and satisfying that cb <
B = cg).
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