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ABSTRACT

We study the channel estimation of a bandwidth efficient automatic

repeat request (ARQ) system in which re-transmissions are symbol

or bit-wise punctured. Unlike simple ARQ in which an erroneous

packet is re-transmitted, many hybrid ARQ systems aim to con-

serve bandwidth by only retransmitting a punctured or re-coded

data packet. In this paper, we formulate a joint semiblind chan-

nel estimation algorithm for the punctured re-transmission in a hy-

brid ARQ network. We show that the joint semiblind estimation is

quite simple and naturally combines training in the first transmis-

sion with retransmitted data statistics. We show that bandwidth

savings resulting from puncturing the retransmission only lead to

marginal degradation to the accuracy of channel estimation.

1. INTRODUCTION

Hybrid ARQ is an effective approach to ensure successful packet

reception while conserving limited bandwidth resources [1]. Af-

ter the receiver checks the CRC and determines that the packet

contains errors despite forward error correction (FEC) decoding,

a retransmission is requested. Instead of retransmitting the en-

tire packet (frame), hybrid ARQ requests the transmitter to either

retransmit part of the original data packet or to use a different

code for forward error correction (FEC)[1]. For distortive chan-

nels, channel estimation in transitional ARQ is often achieved sep-

arately for each (re)transmission. Our fundamental idea is that by

using joint channel estimation techniques, bandwidth may be con-

served with little performance loss in terms of channel estimation

accuracy.

To save bandwidth, it would be helpful if subsequent retrans-

missions can reduce the amount of training data, unlike in tradi-

tional ARQ systems. There are two important questions to ask

regarding an improved hybrid ARQ receiver:

1) With training only in the first transmission, can a semiblind

joint estimation approach be devised to perform compara-

bly to traditionally trained channel estimation?

2) What effect will bit/symbol-wise puncturing have on the

channel estimation performance?

In this work, our goal is to answer these questions.

It should be noted that blind channel estimation has been well

formulated in [4, 7] for standard ARQ retransmissions. Collecting

multiple retransmission over different channels at the receiver, a

single input multiple output (SIMO) framework can directly uti-

lize blind channel estimation algorithms based on second order
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statistics [2][3]. When puncturing is involved in an efficient hy-

brid ARQ system, only selective data are in common for multiple

transmissions. We have already shown that under puncturing chan-

nel estimation condition can in fact be loosened and performance

may even be improved [5].

In this work, our goal is to take advantage of the available

training in many systems during the initial transmission. Specifi-

cally, we exploit both the training and the second order statistical

information jointly to derive a semiblind algorithm with bandwidth

efficiency and better performance.

The organization of this manuscript is as follows. In section

II, the problem formulation and complete signal model of punc-

tured hybrid ARQ is described. The next section briefly discusses

training based estimation. Next, statistical approach to subspace

channel estimation is described in Section IV, leading to the joint

semiblind channel estimator in Section V. Finally, simulation re-

sults are given in section VI.

2. SIGNAL MODEL

Our focus of this work is on the joint semiblind channel estima-

tion of unknown channels under hybrid ARQ when subsequent re-

transmission is punctured symbol-wise for higher efficiency. For

simplicity and without loss of generality, we focus mainly on 2

transmissions over which the wireless channel may or may not

change.

More specifically, let s[k] be the information symbols origi-

nating from the transmitter. The ordered symbol sequence is first

transmitted through a distortive channel with response {hn}. When

frame error remains after detection, a retransmission of the punc-

tured symbol sequence, sp[k], sees a distortive discrete channel

with response {hp
n}. Here, hn and hp

n are the overall channel re-

sponses during the two transmissions that may be different. The

sampled channel outputs of the two transmissions follow the con-

volution relationships

xk =
∞∑

n=−∞
snhk−n + nk (1)

xp
k =

∞∑
n=−∞

sp
nhp

k−n + np
k. (2)

In particular, for a half rate punctured hybrid ARQ,

sp[k] = s[2k]. (3)

We use h and hp to represent vectors of the sampled chan-

nel parameters for the first and second transmissions respectively.
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By padding zeros to the shorter one, we assume that both channel

vectors are of length, L + 1.

nk is a random vector that represents additive noise indepen-

dent of sk. Although the noise may be colored Gaussian [3], here

for brevity, we will consider only the simpler case of additive white

Gaussian noise.

We rewrite equations (1)(2) in matrix-vector notation.

xk =
[

xk xk−1 · · · xk−m1+1

]T
, (4)

sk =
[

sk sk−1 · · · sk−L−m1+1

]T
, (5)

nk =
[

nk nk−1 · · · nk−m1+1

]T
(6)

H =

⎡
⎢⎢⎢⎢⎣

h0 h1 · · · hL 0 · · · 0

0 h0 h1 · · · hL

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 h0 h1 · · · hL

⎤
⎥⎥⎥⎥⎦

m1×(L+m1)

.

(7)

H is a Toeplitz matrix that represents the T-spaced channel

convolution matrix. The following equation is the matrix-vector

equivalent of (1):

xk = Hsk + nk. (8)

Likewise, for a punctured re-transmission, we have

xp
k =

[
xp

k xp
k−1 · · · xp

k−m2+1

]T
, (9)

sp
k =

[
sp

k sp
k−1 · · · sp

k−L−m2+1

]T
, (10)

np
k =

[
np

k np
k−1 · · · np

k−m2+1

]T
(11)

The input-output relationship of this punctured retransmission

results in a new channel matrix of the same structure but with pa-

rameters possibly different from the first transmission, denoted by

H̄. The relationship is thus

xp
k = H̄m2×(m2+L)s

p
k + np

k. (12)

The relationship, (12), can be rewritten such that the input-

output relationship of the punctured retransmission has the same

input signal vector as the first transmission. This results in a new

convolutional transfer matrix, Hp, which is directly related to H̄.

To construct this new “punctured” channel matrix, we first form a

puncturing matrix, J(�,n), with dimension (m2 + L)× (m1 + L),

which is a function of the puncturing rate R = �
n

. In the following

equation let 0 be the zero matrix with dimension 0(m2+L)×(n−�).

We have

J(�,n) =
[

e1, . . . , e�,0, e�+1, . . . , e2�,0, . . . , em2+L

]
(13)

where en is the n−standard (identity) vector.

Now we have sp
k = J(�,n)sk. As a result, we can define

Hp = H̄J(�,n), (14)

with which we can rewrite (12) as

xp
k = Hpsk + np

k. (15)

Here Hp is no longer Toeplitz and has dimension m2 × (L + m1),

where m2 is chosen to satisfy identifiability conditions, and m1 is

determined such that for a given m2 and rate R = �
n

, the number

of columns in H and Hp are the same. Let C(R,m2) be the number

of columns in Hp with m2 rows and a puncturing rate, R. It then

follows that

m1 = C(R,m2) − L

m1 = m2 + �L + m2 − 1

�
�(n − �).

Finally, we combine the input-output relationships for both

transmissions and form a composite channel transfer matrix.

x̃k =
[

xk · · · xk−m1+1 | xp
k · · · xp

k−m2+1

]T
,

ñk =
[

nk · · · nk−m1+1 | np
k · · · np

k−m2+1

]T

h̃ =
[

h | hp
]T

(16)

H̃ =

[
H
Hp

]
(17)

As a result, we have an equation in the desired form

x̃k = H̃sk + ñk (18)

which allows us to define the statistical information to be used in

our semiblind setup to estimate the channel h̃.

3. CHANNEL ESTIMATION WITH TRAINING

Good performance and ease of implementation lead to the use of

some training data for channel estimation. In the first transmission,

we assume that a short training sequence of length greater than

2L + 1 is transmitted in the leading segment of the data frame

prior to data payload,

Given L+N training data points, N samples of channel output

can be used for channel estimation. Specifically, we can collect the

N samples in x and obtain

x = Sh + n (19)

in which S is a Toeplitz training data matrix of dimension N ×
(L+1) and n represents a vector of additive noise. A least square

channel estimate ĥ can be found by

ĥ = min
h

‖x − Sh‖2
2 (20)

4. H-ARQ BLIND SUBSPACE CONSTRAINT

Following [5], we can conveniently generalize the subspace method

of [3]. The basic approach is to first generate second order statis-

tics of the channel output. The autocovariance matrix of x̃k is

decomposed into noise and signal subspaces. After subspace sep-

aration, the required full rank condition of the channel matrix H̃
implies orthogonality between the resulting noise subspace and the

channel matrix. This nullspace separated via subspace analysis

will be used to estimate the unknown channel.

More specifically, let

Rs = E(sks
H
k ) = σ2

sI(L+m1) (21)

R̃n = E(ñkñ
H
k ) = σ2

nI(m1+m2)) (22)

R̃x = E(x̃kx̃
h
k) = σ2

sH̃H̃H + σ2
nI(m1+m2). (23)

Without loss of generality, we will assume that σ2
s = 1.
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Given a full column rank matrix H̃, H̃H̃H is a Hermitian ma-

trix that is positive semi-definite with rank L+m1. As a result, its

eigen-decomposition leads to

UHH̃H̃
H

U = Λ = diag(λ1, λ2, · · · , λL+m1 , 0, · · · , 0︸ ︷︷ ︸
m2−L

) (24)

It is clear and well known that the first L + m1 basis vectors of U
span H̃ and are therefore referred to as the signal subspace. The

remaining m2 − L basis vectors represent noise subspace. As a

result,

UHR̃xU = Λ + σ2
nI(m1+m2) (25)

Thus, if the eigenvalues of R̃x are arranged in descending or-

der, its first L + m1 eigen-vectors still represent the complete sig-

nal subspace, denoted by Us. The remaining m2−L eigenvectors

still represent the nullspace of H̃H̃H , and are denoted by Un. Un

is orthogonal to H̃
UH

n H̃ = 0. (26)

The above equation allows channel estimation under the struc-

tural constraint of H̃ [3, 5]. following the general subspace algo-

rithm outline [3], one will find that (26) can be equivalently written

as
ˆ̃h = min

‖h̃‖=1
h̃H Ū h̃. (27)

The matrix Ū is a hermitian positive definite matrix formed by the

vectors of Un with dimension 2(L + 1) × 2(L + 1).

It is interesting to note that the channel may still be identified

even if channels for the 2 transmission are not coprime. For a de-

tailed presentation of the relaxed identifiability conditions please

see [5, 8].

5. H-ARQ SEMIBLIND SUBSPACE ALGORITHM

In practical scenarios, blind algorithms do not perform as well as

training based solutions. Often the first frame of data transmission

does contain a training segment. Thus, we would like to utilize

both training and the subspace separation shown above. We now

develop a simple semiblind channel estimation as a viable alterna-

tive to sending more training in subsequent retransmissions. Al-

though training is only sent over the first transmission, our semib-

lind algorithm can estimate the channel during both transmissions.

Recall from (20) that h is part of h̃. To formulate our semib-

lind algorithm, we simply combine the two optimization costs (20)

and (27) to form a new joint cost surface. Although more complex

weighting and constrained optimization may be more effective, we

will only describe a simple combination here. In fact, simulations

show that strictly adding the cost functions without weighting pro-

vides the very performance over random channels.

In summary, our semiblind minimization problem is the fol-

lowing
ˆ̃
h = min

h̃
(‖x − Sh‖2

2 + h̃H Ū h̃). (28)

Note that

‖x − Sh‖2
2 = hHSHSh − 2hHSHx + xHx. (29)

Substituting (29) into (28) and setting the gradient with re-

spect to h̃ (not h) of equation (28) to zero, we get the following

expression [
SHS 0

0 0

]
h̃ −

[
SHx

0

]
+ Ū h̃ = 0. (30)

Finally, solving for the optimal semiblind channel estimate, we

have

ˆ̃hopt =

([
SHS 0

0 0

]
+ Ū

)−1 [
SHx

0

]
. (31)

This constitutes the joint semiblind estimation of two transmission

channels in a bandwidth efficient hybrid ARQ network.

6. SIMULATION

In this section, we summarize the performance of our proposed

punctured subspace method (PSSM) in both the semiblind and to-

tally blind scenarios. In addition, we compare its results to that of

the standard subspace approach in a simple ARQ case, and to re-

sults completely based on training. We show these results in four

different experiments.

Note that we assumed a 16 symbol training sequence known as

the Constant Amplitude Zero AutoCorrelation sequence or CAZAC

[6] in the first transmission. For each frame the channel is assumed

to be static. Channel length is assumed to be known at the receiver.

The first data payload is assumed to have 128 symbols. Half-rate

puncturing is taken for the second re-transmission. QPSK modu-

lated symbols are transmitted through two, 10 tap, T-spaced com-

plex channels. We set m2 = L + 1, m1 = 2m2 + L − 1, and

2m = m1 + m2 (i.e. the channel output covariance matrices have

the same dimension).

We consider two different simulations, the first one examines

the performance over the same set of 2 channels

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.297 − .270j
−.422 + .160j
.159 − .173j
−.106 + .037j
.292 − .307j
.003 + .174j
.184 − .107j
−.172 + .311j
−.273 + .082j
−.063 + .317j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

hp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.004 + .249j
.439 − .209j
.35 + .372j
.159 + .075j
.349 − .142j
.176 + .223j
−.174 + .051j
−.231 − .061j
−.174 + .214j
−.038 + .133j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

for every Monte Carlo iteration. The second example examines the

performance over a collection of 20 randomly generated circular

complex Gaussian channels.

The normalized mean square error (NMSE) is used to measure

the performance of channel estimation. For every simulation we

assume the receiver knows the channel length. In practice, the

receiver must estimate the channel order using a moving average

model order estimator, such as the minimum description length

algorithm (MDL) [9].

The resulting NMSE in Figure 1 shows that totally blind PSSM

and SSM have very similar performances. One can see that their

performance is significantly worse than the training based method.

This is what motivates the use of a semiblind approach. The semi-

blind approach is far more reliable than the totally blind method

and thereby provides a more attractive alternative to all training

estimation.

In the second simulation, 20 random complex Gaussian ISI

channels are used. Figure 2 suggests that blind PSSM is slightly

more effective than SSM. This can be explained because some ran-

dom channels may be nearly coprime, leading to ill-conditioning

for H̃. On the other hand, co-prime-ness is not required for the

channels in PSSM. Hence, the results are more dependable as var-

ious random channels are tested. What is more notable, however,
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Fig. 1. Simulation using a single channel and 128 symbols
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Fig. 2. Simulation using 20 random channels and 128 symbols
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Fig. 3. retransmission channel estimation performance over ran-

dom channels

is that the semiblind channel estimation performs very well even

though training is absent for the estimation of the second channel.

Finally, Figure 3 compares the channel estimation performance

only for the second channel during retransmission. As there is

no training for this channel, all methods are compared fairly. It

is clear from the figure that, although training is only sent during

the first transmission, the semiblind result still significantly out-

performs the totally blind estimate.

7. CONCLUSION

Puncturing data before retransmission is an effective way to reduce

bandwidth usage in ARQ. This bandwidth saving may be compro-

mised partially if training must be present in retransmitted data

packets. In this work, we present a joint semiblind channel esti-

mation approach that does not require training in ARQ retransmis-

sions. It provides much better performance than purely blind al-

gorithms without obvious increase of complexity. In applications,

many hybrid ARQ schemes send a fraction of the data, for instance

the parity check bits, during the second transmission. Our frame-

work for joint channel estimation using subspace techniques fits

conveniently within that application. Semiblind PSSM algorithm

is shown to be an accurate, bandwidth efficient approach that can

be easily integrated into many existing ARQ schemes.
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