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ABSTRACT

A GA-based realization method of the optimal finite-precision
system is proposed. The optimal realizations of the finite-
precision systems are defined as those that minimize the
error between the frequency characteristics of the original
infinite-precision system and its finite-precision represented
one and can be shown as the solutions of a nonlinear pro-
gramming problem. Therefore, in this paper, GA-based
optimization strategy is presented to provide an efficient
method for solving this problem. The proposed realization
method of the optimal finite-precision system is based on
not only the GA but also an SA to prevent the GA from go-
ing into local minima. Some numerical examples and com-
parison simulations with the traditional quantization meth-
ods, such as rounding off, rounding up, and rounding down,
and another SA-based method are given to verify the high
performance of the proposed method.

1. INTRODUCTION

The recent advantages in digital system design methods have
led to a need for the efficient and accurate hardware im-
plementation. Although the number of system implementa-
tions using floating-point processor has been increasing; for
reasons of cost, simplicity, speed, and memory space, the
use of fixed-point processor is recently more desirable for
many industrial and consumer applications. However, even
if using floating-point processor, it is well-known that when
the infinite-precision system is implemented as a finite-precision
system, its frequency characteristic must worsen and may
become unstable due to finite-word-length effects.

Therefore, this paper proposes a new realization method
of the finite-precision systems to prevent the finite-word-
length effects. The optimal realizations of the finite-precision
system are defined as those that minimize the error between
the frequency characteristic of the original infinite-precision
system and its finite-precision represented one and can be
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shown as the solutions of a nonlinear programming prob-
lem. Therefore, we adopt a genetic algorithm (GA)[1] based
optimization strategy to provide an efficient method for solv-
ing this problem. Also the GA used in the proposed realiza-
tion method includes a simulated annealing (SA)[2] to pre-
vent the GA from going into local minima. Consequently, it
effectively searches for the optimal finite-precision IIR sys-
tem, which retains the frequency characteristic of the orig-
inal infinite-precision one, from a population of the finite-
word-length IIR systems.

Some numerical examples and comparison simulations
with not only the traditional quantization methods, but also
another SA-based method are given to verify the high per-
formance of the proposed method.

2. THE GA-BASED FINITE-PRECISION SYSTEM
REALIZATION

In the GA for the realization of the optimal finite-precision
system, a chromosome represents a finite-word-length IIR
system and each gene represents a discrete-valued coeffi-
cient of the system. With these representations, the GA
searches for a chromosome corresponding to the best finite-
precision system from the population of all of the possible
finite-precision systems, where the best finite-precision sys-
tem is the one which can retain the original frequency char-
acteristic most accurately. In addition, an SA is embedded
into the GA in order to avoid being caught by local minima.

The detail implementation of the proposed method is de-
scribed in the following:

(i) Initial population
Suppose the population has Npopulation individuals. The

coefficients of the original system or the system obtained
by a model identification algorithm such as [7] from an ob-
served signal are rounded off, up, and down. From these
three finite-precision systems, the first three chromosomes
are generated respectively by chaining together the coeffi-
cients to form an individual which contains (p+q)∗L genes,
where (p, q) is the filter order and L is the word length of
the binary representation of a coefficient, as shown in Fig.

II - 4130-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



a1 a2 ap-1 ap b1 b2 bq-1 bq

L bits

1011...10 0110...10 1001...11 0101...10 0011...00 1001...10 0011...10 1111...00

Finite-Word-Length

Fig. 1. An Example Chromosome representing a tar-
get IIR system, whose transfer function is H(z−1) =
1+a1z−1+···+aN z−N

1+b1z−1+···+bM z−M , with the finite-word-length L bit.

1. The remaining (Npopulation − 3) chromosomes are then
generated from these three based on probabilities of bino-
mial distributions. First, one individual is randomly selected
from the first three. Next, its genes are changed according
to the following binomial probability P (i); where P (i) rep-
resents the probability that the gene corresponding to Iic is
changed to another value Ii, and Ij (j ∈ {1, 2, . . . , L|I1 <
· · · < IL}) is a possible finite-word-length value:

P (i) =

⎧⎨
⎩

PR(i) (iR ≥ i > ic)
PL(i) (iL ≤ i < ic)
0 otherwise,

where if NR
�
= iR − ic(> 0) and NL

�
= ic − iL(> 0), then

PR(i) =
(2NR − 1)!

(NR − i + ic)!(NR + i − ic − 1)!

(
1
2

)2NR−1

,

PL(i) =
(2NL − 1)!

(NL − ic + i)!(NL + ic − i − 1)!

(
1
2

)2NL−1

.

The above probability functions are well-known as binomial
distributions. The parameters iR and iL are integers mini-
mizing |IiR

− Iic
− Lrange| and |Iic

− IiL
− Lrange|, re-

spectively, where Lrange is a predefined parameter.

(ii) The fitness
Suppose the transfer function of a finite-precision sys-

tem corresponding to a chromosome f is H(ω), its fitness
is defined as follows:

a) If the finite-precision system represented by f is stable,

fitness(f)
�
=

1
E(f)

(1)

where E(f) denotes the difference between H(ω) and the
transfer function of the original filter Horg(ω). For exam-
ple,

E(f)
�
=

∫ π

0

W (ω)
∣∣∣∣|Horg(ω)| − |H(ω)|

∣∣∣∣ dω (2)

where W (ω) is a frequency-weighting function. The inte-
gral is practically computed by the summation with discrete
ω. Or
b) If the finite-precision system represented by f is unsta-

ble,

fitness(f) =
1
m

(
N−1∑

k=N−m

|h(k)|
)−1

(3)

where h(k) is the impulse response of the finite-precision
system f ; and m is the number of the data samples used for
deciding whether the impulse response is converged.

The stability of the finite-precision system represented

by each individual is judged as follows: if
N−1∑

k=N−m

|h(k)|

< CTh, then it is stable; otherwise it is unstable, where
CTh is usually set at m |h(0)|. While the GA iteration is
proceeding, the unstable individuals gradually expire, and
will not be finally selected as the optimization result. Since
some unstable chromosomes possibly have good genes, our
method does not make them lethal. The frequency-weighting
function W (ω) in Eq. (2) can control the accuracy of the
finite-precision system in an arbitrary frequency region[6][7].

(iii) Reproduction (Selection)
Reproduction is performed by the rank selection, which

ranks the individuals in descending order according to their
fitness. Furthermore, in our method, all of the individuals
representing stable filters are ranked ahead of all the unsta-
ble individuals. Then k-th ranked individual receives the
following selection probability:

P (k) =
2(Npopulation − k + 1)

Npopulation(Npopulation + 1)
. (4)

DeJong’s elitist model[8] is also utilized for the elite to
survive.

(iv) Crossover
The uniform crossover[1] is used.

(v) Mutation
Mutation is performed on genes selected according to a

probability of mutation. A selected gene is replaced by a
value generated by the same manner as in (i), where both
Iiu and Iid

are substituted with the original value of the se-
lected gene, respectively.

(vi) Including a simple SA
The following simple SA is applied to all the chromo-

somes f ’s in an interval of Ninterval GA generations: Firstly,
a gene Iit (it ∈ {1, . . . , L}) of f is randomly selected and
randomly changed to either Iit+1 or Iit−1. Then, the chro-
mosome with the new gene is denoted by f ′. If f ′ is unsta-
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Fig. 2. Fitness versus generation. fitness = 1/E(f). Ten
trials with different initial populations generated randomly
with different seeds. The fitness of the elite in each trial is
plotted.

ble, the above procedures are repeated until either a stable
f ′ is obtained, or the number of the repeat reaches the limit
Nrepeat. Secondly, f is replaced with f ′ based on the fol-
lowing acceptance probability:

P =
{

1 (∆E < 0)
e−∆E/Ti (∆E ≥ 0)

(5)

where ∆E = E(f) − E(f ′), and Ti is a control parameter,
which is generally called temperature. The above replace-
ment is iterated starting with initial temperature T0, and the
temperature is decreased as Ti+1 = αTi, and the iteration
is terminated when Ti = Tend. Though the choice of good
starting points is important for good performance in general
SAs, our method is less sensitive to the initial starting points
since the initial state, that is f before the iteration, is pro-
vided by the GA search.

(vii) The condition to terminate the GA iterations
When the number of the generation attains to Ntermination,

the GA iterations are terminated.

3. EXPERIMENTAL RESULTS

3.1. Performance Verification

The proposed method is applied to a 10th degree Butter-
worth filter, where the quantized coefficients are represented
by sign 1 bit, mantissa 2 (nf ) bits, and exponent 3 (ne) bits
as follows:

(−1)gs ×
(

1 +
nf∑

k=1

2−kck

)
× 2eu ,

where gs, ck ∈ {1, 0}, and eu ∈ {−7,−6 . . . , 0}. The
fitness function E(f) in Eq. (2) is used. The frequency-
weighting function is W (ω) = 1 if ω < π

2 , otherwise
W (ω) = 0.5. It helps the proposed method to realize the
finite-precision system more accurately in the low frequency
band than in the other frequency bands. The parameters
for the GA in the proposed method are: Npopulation = 60;
Lrange = 0.25, which is the longest distance between neigh-
boring quantized points; m = 16 and N = 1000 in Eq. (3);
CTh = mh(0); the probability of mutation is 6 %; and the
number of generations Ntermination in the termination con-
dition is 106. The parameters for the embedded SA are:
T0 = 10−3, Tend = 10−6, Nrepeat = 42, Ninterval = 50,
and α = 0.95.

First, we demonstrate the behavior of the fitness of the
elitist individual in Fig. 2. E(f) of 10 trials (out of total 30)
with different initial populations randomly generated by a
random number generator with different seeds are plotted
against generation. The smaller the E(f), the better the fit-
ness as defined in Eq. (1). They are all decreased with the
growth of the generations. Among all 30 trials, the best,
worst, and average quality of filter are -53.0 [dB], -38.1
[dB], and -46.7 [dB], respectively. These are all better than
-23 dB which is given by the rounded filter. The frequency
characteristics of the finite-precision systems obtained by
rounding down, up, and off, and the proposed method are
shown in 3. This figure also indicates that the proposed
method can provide enough quality of the finite-precision
system.
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Fig. 3. The frequency characteristics of the finite-precision
systems. (a) shows the reference frequency characteris-
tic; (b) is the filter of which the coefficients are rounded
down; (c) rounded up; (d) rounded off; and (e) the proposed
method.
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3.2. Comparison of convergence performance with an-
other SA-based method

Next, we show the convergence performance of the pro-
posed method by comparing it with the SA-based method
in [5]. For better comparisons, we use the same criterion
that is used by [5] to replace E(f) in Eq. (2) as follows:

E(f) = max
ω

{∣∣W (ω)
(
G−1H(ω) − Horg(ω)

)∣∣} (6)

where G is the filter gain. Unlike in [5], the continuous
value G needs to be searched for, in our algorithm, it can
be computed by H(ω) represented by the individual f as
follows:

G(f) =
{

pmax+pmin

2 , pmax−pmin

2 ≤ smax

pmin + smax, otherwise

where pmax, pmin, and smax are the maximum, minimum
values in its passband, and the maximum value in its stop-
band, respectively.

The target system is a linear phase FIR system of order
N (odd) of which the frequency characteristic is with nor-
malized passband 0 ∼ 0.3 and stopband 0.5 ∼ 1. W (ω) = 1
for these bands, and otherwise W (ω) = 0 for the others.
The finite-word-length coefficients are represented by

2∑
k=1

dk2−gk , dk ∈ {−1, 0,−1} and gk ∈ {1, . . . , B}

where B = 10 in this experiment. Other parameters in the
proposed method are the same as those for the experiments
in 3.1.

Table 1 shows the computational costs before the con-
vergence which are reported as the total number of func-
tion evaluations. Where the quality of the obtained finite-
precision system by the proposed method is equal or better
than [5]. Clearly, the proposed method can provide a signif-
icant saving in computational cost.

In these simulations several restrictions have to be in-
cluded for the execution of [5]. However, the proposed
method can be applied to not only this kind of system but
also any other ones.

4. CONCLUSION

The GA-based realization method of the optimal finite-precision
system has been proposed. By using the proposed method,
we can obtain the optimal quantized filter, which retains the
reference frequency characteristic most accurately.

Some numerical examples have been given to verify its
higher performance than the traditional quantization meth-
ods’, such as rounding off, rounding up, and rounding down.
And also the comparison simulations with the SA-based
method have indicated that the proposed method can reaches
the desired accuracy faster than SA-based method does.

Table 1. Convergence performances of the proposed
method and [5].

Proposed Method SA-based Method in [5]
Filter Number of Number of

Length Evaluation∗1 Evaluation∗2

N (×105) (×105)
27 0.34 8.49
29 0.67 9.39
31 1.06 10.6
33 2.39 10.26
35 2.79 11.05

∗1: The number of evaluation includes the GA and SA
evaluations both before the convergence. It is the
average of 50 trials.

∗2: The number of evaluation in the SA before the
convergence.
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