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ABSTRACT

In this paper, we investigate the best delay LS inverse filter 

design problem. We propose FIR-IIR LS inverse filters to 

improve the LS error performance for the same complexity.

Furthermore we present a new approach for the design of FIR-

IIR LS inverse filters by using a special selection procedure 

for the IIR part. We derived the closed form LS error 

expressions and compared with the practical results in order to

effectively show the performance improvement in this case. In 

general 4-5 dB improvement is achieved compared to the best

delay LS inverse filter design approach. 

1. INTRODUCTION 

The design of inverse filter is an important problem in 

telecommunications and signal processing. Inverse filtering is 

closely related to the deconvolution and equalization

problems. The most convenient error criteria for the design of

inverse filters is the LS error criteria. LS and weighted LS 

design methods [1]-[4] have been widely used. In [5] a best 

delay design strategy is introduced and best delay FIR-IIR LS

inverse filters are used in the design of Wiener filters. IIR part 

in the FIR-IIR inverse filter allows exact inversion of the

minimum-phase part while the FIR part is used for the

maximum-phase component of the channel response. This 

approach has been shown to improve the LS error for the same

complexity [5]. However there are some drawbacks of this

approach as well. When the channel zeroes are close to z=0,

the use of the IIR part becomes redundant and a single FIR 

inverse filter performs better for the same computational

complexity.

In this paper, we propose a ring based approach for the

selection of the IIR part in order to overcome the problems in 

[5]. In this case, IIR part of the FIR-IIR filter is constructed by

considering the channel zeros inside a ring in unit circle. This 

approach increases the effectiveness of the IIR component and 

a significant improvement in LS error performance can be 

achieved.

Closed form LS error expressions are derived for the

inverse filter when the channel order is small. These 

expressions are used to validate the proposed approach. In 

addition, several experiments are done in order to compare the 

ring based best delay FIR-IIR LS inverse filters with the best

delay FIR LS inverse filters. It turns out that a significant

improvement can be obtained when the channel has zeros 

close to the unit circle. We also considered the pre- and post-

inverse filtering approaches when there is channel noise. It 

seems that the proposed approach also performs better for low

SNR especially for the pre-filtering case. 

2. BEST DELAY FIR LS INVERSE FILTER 

In this part, we will summarize the design of best delay FIR

LS inverse filter. The delay of the LS inverse filter seriously

affects the LS error. Therefore it is important to find the

optimum delay in the inverse filter design. Let h(n) be the 

channel filter, and hinv
FIR(n) be FIR LS inverse filter. The LS 

error can be written as, 
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where a is a constant scale factor and k is an arbitrary delay.

The convolution operation above can also be written in matrix

form as, 
FIR

inv
Hh da (2)

where H is the Toeplitz convolution matrix and d is the 

desired vector, which contains 1 at kth location and all the

other elements are zero.
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We will find the best delay and LS inverse filter by using the

SVD (Singular Value Decomposition) of the convolution 

matrix, namely,
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If we use the same error expression as in [6], the LS error can 

be written as, 
FIR
inv

HHHHFIR
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H hHVVUdUUdHhddLSEE (5)

Above expression is due to the counterpart of the

orthogonality principle and orthogonality of the left and right 

singular matrices U and V. This expression is especially useful 

for the overdetermined case. Then, LS error for a delay of k 

samples can be written as, 
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Above equation is nothing but the squared sum of the kth row 

of left singular matrix U. Best delay for a given channel h is

found as the index of the row which gives the minimum LS 

error,

arg min k

opt LSEk (7)

Once the best delay is found, desired vector d is determined

and the best delay FIR inverse filter is found as, 
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3. FIR-IIR LS INVERSE FILTER 

In general, any channel response can be decomposed into 

minimum and maximum-phase components as given below: 

min max( ) ( ) ( )H z H z H z (9)

We assume that Hmax(z) includes the zeros on the unit circle as

well. In the conventional FIR LS inverse filter design, the 

minimum-phase component is also inverted by an FIR filter.

However we can use FIR-IIR filter in order to have a better

inverse filter. FIR-IIR idea is based on the fact that Hmin
-1(z) is 

always a casual and stable IIR filter. Therefore the inverse

filter for the FIR-IIR case is composed of an IIR part

corresponding to Hmin
-1(z) and an FIR part for the maximum 

phase part,

max

min

1
( ) ( )

( )

FIIR FIR

inv
H z H z

H z
              (10) 

where Hmax
FIR(z) is the best delay FIR LS inverse filter of the 

maximum-phase component. 

Since IIR part is a perfect inverse filter, it produces no LS 

error. Therefore the LS error of FIR-IIR LS inverse filter is 

produced only by the FIR part. So the LS error performance 

comparison should be done between the FIR LS inverse filter 

and the FIR part of the FIR-IIR LS inverse filter. The

expression after channel inversion is given as, 

max max
( ) ( ) ( ) ( )FIIR FIR

inv
H z H z H z H z               (11) 

For a reliable comparison, the complexity of both FIR LS 

inverse filter and FIR-IIR LS inverse filter should be the same.

Therefore the length of the Hmax
FIR(z) filter is less than the 

length of the FIR inverse filter Hinv
FIR(z). The overall 

performance of the FIR-IIR filter depends on the location of

channel zeros. Let “a” be one of the channel zero. Then the 

inverse operation to cancel the effect of this zero can be

written as, 
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When |a|<<1, 1/(1-az-1) can be effectively approximated with 

an FIR filter. The length of the FIR part of FIR-IIR filter will

be decreased by one when a first order IIR part is used to 

compensate the pole of the inverse filter. This in turn increases 

the overall LS error in inverse filtering. So when the channel 

zeros are close to z=0, IIR part becomes redundant and FIR

inverse filter has a better performance. If on the other hand, 

the channel zeros are close to the unit circle, IIR part of the 

FIR-IIR filter can effectively model the inverse filter while 

this is not possible for a purely FIR inverse filter. Therefore

when the FIR-IIR filter is designed as in equation (10), there 

are certain cases where the performance of this filter becomes

inferior to the FIR inverse filter. In order to solve this problem,

we propose a special selection procedure for the IIR part of the

FIR-IIR filter. This is based on a ring inside the unit circle. 

3.1. Ring Based FIR-IIR LS Inverse Filter 

In this case, we will select the IIR part such that it will be 

responsible only for the channel zeros inside a ring in the unit 

circle. Therefore IIR part of the Hinv
FIR(z) will be a causal and 

stable filter in this case as well. The problem is the 

identification of the suitable radiuses for the ring region. This 

also corresponds to the identification of the suitable orders for 

the FIR and IIR parts of the FIR-IIR filter. Since the 

computational complexity of the FIR-IIR filter is equal to the

computational complexity of the FIR inverse filter, it is 

sufficient to find the order of the IIR or the FIR part only.

Channel zeros significantly affect the LS error and 

therefore the zero locations should be taken into account when

we choose the ring region. In Figure 1, we show the effect of 

the channel zero on the LS error for the inverse filter. In this

case, the channel order is one and the FIR inverse filter length

is three. It seems that the main LS error contributions come

from the channel zeros which are close to the unit circle. For

the best error performance, the poles of the FIR-IIR LS inverse 

filter should be used to cancel the zeros whose error 

contributions are sufficiently large. Therefore causal and 

stable IIR part should be defined based on a ring inside the 

unit circle. As it can be seen from Figure 1 this ring can be 

defined between the inner radius Ri and outer radius Ro such

that,

1
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This region is illustrated in Figure 2. Therefore IIR part of the 

FIR-IIR filter will be obtained from the channel zeros which

fall into the ring. We can express the channel filter as, 

)()()( 21 zHzHzH AA

where HA1(z) is composed of the channel zeros in the

ring and HA2(z) is composed of the channel zeros outside

the ring. Then the inverse filter can be obtained as, 
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In order to find suitable radiuses Ro and Ri , we obtained the

closed form expressions for the LS error. 

The FIR LS inverse filter impulse response can be found by

using (2) and assuming that a is equal to 1 as, 
FIR †

inv
h = H d

H

               (13) 

where, d is the desired response, and 
-1

† H
H = H H H                (14) 

is the pseudoinverse [6] of H. But the inverse filter hinv
FIR is 

not the perfect filter that produces desired response d when 

cascaded with the channel filter. The actual output is: 
FIR †

actual inv
d = Hh HH d               (15) 

There would be some error between the desired response and 

the actual output. This error term can be written as, 
†

actual
e = d - d = I - HH d               (16) 

by using this error term LS error can be found as, 
H
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H † †
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e e

d I - HH I - HH d
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d I - HH I - HH d

d I - HH d

H

H
H
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Let the optimum delay for FIR LS inverse filter be “k”. So the 

desired response can be written as given in (3). Then LSE can

be simplified as, 
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where bkj elements are the terms in the kth column of B, N is 

the length of the FIR LS inverse filter and L is order of 

channel filter. Then 

( , )BkkLSE b k k               (18) 

By using this result, we derived the LS error for the FIR 

inverse filter when the channel order is one. It is given as, 
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where a is the zero of the channel filter. We also derived the

LSE formulas for second order channel filter. These

expressions will not be presented here due to space limitations.

4. PERFORMANCE EVALUATIONS 

4.1. No Noise Case 

We will use the results in the previous section and find the 

most convenient ring for the IIR filter selection. We will 

consider a channel with order two and the FIR best delay LS

inverse filter length will be chosen as three for simplicity. One 

of the zeros of the channel is assumed to be inside the unit 

circle and the other is at the outside of the unit circle. For the

above simple case, we can model channel filter components

HA1(z) and HA2(z) as follows,
1

1

1

2
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For this case, we chose the outer radius of the ring as one and 

Ro=Ru. Then the value of |a|, which is equal to Ri, is found as a 

function of |b| and the LSE difference between the FIR LS

inverse filter and the FIR-IIR LS inverse filter. The results are

graphically illustrated in Figure 3. In this figure, the area in

which inner roots are shown as –1 represents that for a given 

outer root b and a LSE difference, there is no solution for an 

inner root a where the FIR-IIR LS inverse filter has better LSE

than the FIR LS inverse filter. For such cases, inner radius

should be equal to the outer radius. Therefore there will be no 

IIR part for the FIR-IIR LS inverse filter and it will be same as 

the FIR LS inverse filter. For a given outer root, inner radius

increases when the LSE difference increases. Also when the

outer root magnitude is decreased, inner radius increases for a

constant LSE difference. It is also evident that there is a large

region where the LSE performance of the FIR-IIR filter is 

better than the LSE performance of the FIR inverse filter

(LSE>0).

For more general channels, the effect of the radiuses of 

the ring on the normalized LS error is illustrated in Figure 4. 

In this figure LS error difference between the FIR-IIR LS 

inverse filter and FIR LS inverse filter is evaluated for 100 

normal distributed random real channels. The inner radius is

chosen to be smaller than the outer radius. As it can be seen

from the figure the optimum ring area can be defined between 

the unit circle and the inner radius which is approximately 0.6. 

For this case, approximately 4-5 dB performance 

improvements can be achieved.

4.2. Noisy Case 

We also considered the case where there is noise in the inverse

filtering operations. The two alternatives for inverse filtering 

are treated, namely the pre- and post-filtering as shown in 

Figure 5. In the pre-filtering case, data is pre-filtered before

transmission. Inverse filtering is done after the channel

processing for the post-filtering. Figure 6 shows the 

performance comparison between the FIR-IIR and FIR inverse

filters for the pre-filtering approach. Positive values of LSE

indicate the cases where the FIR-IIR filter has better

performance. In this case, the difference between the inner and

outer radius is chosen as 0.5 and the LSE difference is shown 

for different SNR and outer radius selections. It seems that the 

best choice for the outer radius is close to one. Similar

experiments are done for the post-filtering case as well. The

results are shown in Figure 7. It seems that the SNR increase

leads to better performance for the FIR-IIR filter for both 

cases. However the performance for pre-filtering is better than 

the post-filtering. This is reasonable since there is some noise 

enhancement in case of post-filtering. 

5. CONCLUSION 

In this paper, we present a new approach for the design of

LS inverse filters. We propose FIR-IIR based approach

together with a special selection for the IIR part. IIR part of 

the FIR-IIR filter is selected from the channel zeros which fall

into a ring region inside the unit circle. We derived closed

form LS error expressions and compared the performance of

the FIR-IIR filter with the FIR best delay inverse filter for 

different channel, inner and outer radius values. It is shown 

that one of the best choice for the outer radius of the ring is 

one. A good choice for the inner radius is 0.6. We had 

considerable performance improvement over FIR inverse 

filters. In addition, FIR-IIR inverse filters have a large region

where they have better performance than their FIR

counterparts.
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Figure 1  LSE changing with the

position of zeroes for N=3, L=1 
Figure 4  Inner , outer radius and LSE 

difference for N=32, L=15. 

Figure 5 Two structures that inverse filter can

be used

Figure 2. Ring based separation of 

the z-plane for the IIR part. 

Figure 6 Performance comparison for 

the pre-filtering for N=32, L=15.

Figure 3 Theoretical results for the 

inner radius selection for N=3, L=1. 

Figure 7 Performance comparison for 

the post-filtering for N=32, L=15.
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