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ABSTRACT

In this paper, a generalized maximum likelihood symbol synchro-

nization scheme is proposed. It enables use of variable fractional

delay (interpolation) filters when the desired sampling rate con-

version factor is non-integer or time varying. Furthermore, both
IIR and FIR type variable filter structures can be used in efficient

configuration. The paper includes both performance analysis and

discussion of implementation complexity.

1. INTRODUCTION

The current trend is to use digital receivers where the sampling of

the demodulated baseband signal is performed by a fixed sampling
rate oscillator. This new design approach reduces the number of

required analog components as most of the receiver functions are

performed digitally. Using digital signal processing instead of ana-

log signal processing allows increased flexibility, configurability,
and integrability of the receiver. From these properties arises the

software radio (SWR) concept [1] which is a natural progression

of the digital radio receivers towards multimode, multistandard ter-

minals where most of the functionalities are defined by software.
These SWR systems employ direct conversion receivers with

asynchronous sampling such that the actual sampling instants are

not synchronized with the incoming symbol stream. In order to

evaluate the received symbols at optimum instants we must oper-
ate in synchronism with the symbol stream. Maximum Likelihood

theory can be used to develop optimal timing recovery schemes

and digital fractional-delay filters can be used for synchronization.

The novel gathering structure offers an efficient and flexible real-
ization of the required fractional-delay interpolators [2].

In multi-mode multi-service systems the symbol rates of the

different services may vary. This means that the oversampling ra-

tios of the respective streams will be different. Furthermore, some

applications will find FIR FD synchronization filters more suitable
than their IIR counterparts, and others vice versa. Thus it is desir-

able to develop a generalized symbol synchronization scheme that

can be used with any carried service, irrespective of the specific

oversampling ratio (OSR) and choice over FIR or IIR type.
There have been publications on synchronization algorithms

for specific oversampling ratios and on sampling rate conversion

by arbitrary factors using fractional delay filters [2]-[6]. However,
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there has not yet been a generalized algorithm that would clearly

present a synchronization algorithm suitable for both FIR and IIR

filters using arbitrary oversampling ratios. This is the void that this
paper aims to fill by proposing a generalized maximum likelihood

symbol synchronization scheme applicable for both FIR and IIR

filters running at arbitrary oversampling ratios.

In Fig. 1 symbol synchronization is performed digitally for ar-
bitrary oversampling ratios using an FD filter. The received signal� � � 
 � is first digitally sampled at a fixed sampling rate  � � � � � � .

We assume that the overall transfer function before synchroniza-

tion meets the Nyquist criterion. Symbol synchronization is usu-
ally performed near a sampling rate twice the symbol rate. In or-

der to achieve this, economical fixed sample-rate conversion tech-

niques can be utilized, such as the cascaded integrator-comb (CIC)

filters [5, 7]. Before symbol decision the residual timing offset is
corrected using an FD interpolation filter and ML feed-forward

timing estimation. It is assumed that there is only little jitter be-

tween expected transmit and receive symbol rates such that timing

offset can be considered constant for each block of � symbols.

2. GENERALIZED SYMBOL SYNCHRONIZATION
SCHEME FOR ARBITRARY OVERSAMPLING RATIOS

The input signal � � � � � � has sample rate  � . The output signal� � � � ! " � sample rate is equal to the symbol rate  � � � � '
 � � � � � � [samples/second]. This means that the synchroniza-
tion process actually involves the process of decimation [5] as the

input sampling rate  � is simultaneously converted into the lower

output sampling rate  as shown in Fig. 1. Formally this can be

expressed as

� � � 
 � � + , � � � � � � . � � 
 0 � � � � (1)

2 � � � � ! " � 4 � � � " � 8 � � � (2)

� + , � � � � � � . � � " � 8 � � 0 � � � �

� + , � � � � � � . � � ; = � � 0 > = � � 0 � � � �
where . � � 
 � is a continuous-time interpolation filter and � � � � ! " �
the " th soft output symbol estimate whose timing has been cor-

rected by the fractional delay � � D � � relative to the symbol

interval � .
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The ideal continuous-time interpolation filter � � � � � can be ap-
proximated by a digital interpolation filter giving �� 	 � �  � � �� 	 � �  � � as �� 	 � �  � � � � � � 	 � � � � � � � �  � �  � � (3)� � � � 	 � � � �  � � � � � �  � �� � 	 � � � � � % � � � �  � � � (4)' �� 	 � � � �  � � � (5)

where % denotes convolution,� , - � , � � � , /  � � , / (6)� � � 1 2 4 6 7 8 � � - � � ,, / ; < > (7)� � � � �  � � - � � ,, / < @  B D E  B D E @  (8)

and � � � �  � � � � � � � � � , /  � � , / � is a continuous function of� � < @  B D E  B D E @ such that it can be used to resample the received

signal � 	 � � � � � at the required fractional delays L � � O relative to

the sampling interval , / .

2.1. Maximum Likelihood Feedforward Timing Estimation

The log likelihood function (LLF) for symbol timing estimation,
assuming an additive Gaussian noise Nyquist channel, is given by

[4, 8] P � � � � R RRRR
S�� U W �X Y� �� 	 � �  � � RRRRR (9)

with
Y

denoting complex conjugation. Here L �X � O are the cor-

rect (data aided, i.e., training mode) or estimated (decision di-

rected) symbol values, �� 	 � �  � � the fractionally delayed symbol

estimates, � a fractional delay (relative to , ), and \ the number
of used past symbols. The delay � is assumed to remain constant

within the block of \ symbols. We will assume a training signal

and thus the symbols in (9) are known, i.e., L �X � O ] L X � O .

The maximum likelihood (ML) feedforward fractional delay

estimate �� is defined as�� � �^, � ` 1 b c ` ef L P � � � O < @  B D E  B D E @ (10)

where �^ is the timing error estimate in seconds and , the symbol

interval. Here,

P � � � is approximated by a polynomialP � � � � i k � k - i k l W � k l W - m m m - i o (11)

of order p . The coefficients L i o  i W  D D D  i k O can be obtained

by solving the system of linear equationsrssst u � o � vo m m m � kou � W � v W m m m � k W
...u � k � vk m m m � kk

w xxxy
rssst i oi W

...i k
w xxxy � rssst P � � o �P � � W �

...
P � � k �

w xxxy (12)

provided we have an interpolation filter that can evaluate

P � � { �
for a chosen set of distinct delay values L � ~ O k~ U o . The maximum-

point estimate is then obtained in closed form by solving for the

peak point of the polynomial [3]. The structures presented in this

paper can be used with any p . Furthermore, it is possible to divide

the interval � < @  B D E  B D E � into more than one section and use

separate polynomials for each section.
With integer-ratio oversampling (i.e., , � , / < > � ) the set of

delay values L � ~ O , relative to the symbol interval , , will map into

a respective set of delay values L � � ~ O according to (8) as� � ~ � � �  � � - � ~ � ,, / < @  B D E  B D E @  for � � B  u  �  D D D  p
(13)

relative to the sampling interval , / . For integer-ratio oversam-
pling this set will remain constant for all symbol indices � . More-

over, the set L � � ~ O k~ U o will generally contain duplicate values of

which only the subset consisting of all unique values must be pro-

cessed to obtain the required outputs. With rational oversampling
ratios , � , / , instead, each delay value � ~ relative to the symbol in-

terval , will map into a cyclic sequence of delay values L � � ~ O �
relative to the sampling interval , / , for consecutive symbol in-

dexes � . The length of the cycle can be solved as � � fromc � 6� � 8 � � � � ,, / ;  for � �  � � � < > � (14)

Furthermore, with irrational oversampling ratios there will be an
infinite sequence of distinct values, L � � ~ O � , corresponding to

a single delay value � ~ , for consecutive symbol indexes � , i.e.,� � ] � .

With FIR filters it does not matter whether the delay values
map one-to-one or one-to-many, because each output sample eval-

uated at a desired delay is independent of any previously processed

output samples and their delay values. For recursive (IIR) filters,

however, the mapping is significant. Whenever the delay value
(variable filter coefficients) of a given recursive filter is changed,

the output signal will become corrupted by transient effects [9].

This makes it desirable to dedicate individual feedback loops for

each of the required delay values L � � ~ O relative to the sampling

interval , / . More delay values will then mean more feedback
branches. The number of distinct delay values L � � ~ O depends on

the OSR as in (14) and choice of the delay grid L � ~ O k~ U o in (12).

3. TIMING ADJUSTMENT USING GATHERING
STRUCTURES

In this section, we show how the proposed generalized symbol

synchronization scheme for arbitrary oversampling ratios can be

implemented using either IIR or FIR gathering structures for FD

filters [2]. The proposed implementations allow to efficiently ob-
tain several symbol estimates at different delay values, as required

by the LLF in (9) and in (12).

3.1. IIR Allpass Structure

This subsection presents how the fractional delay required by the

generalized symbol synchronization scheme can be implemented

utilizing IIR allpass gathering structures [10]. IIR filters often offer

lower implementation complexity than their equivalent FIR coun-
terparts [11] and allpass filters have exactly unity magnitude by

definition, so that they provide an ideal FD technique for applica-

tions, where stability problems may arise. The transfer function of

an IIR allpass filter with variable real coefficients is given by� � �  � � � � l W i � �  � l W �i � �  � � (15)
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Fig. 1. Gathering structure with multiplexed output history for
IIR allpass FD filters. The equations � � � � � � used in ML timing
estimation are pointed out.

where	 �  � � � � � � ��� � � � � �  � � " � � � � %� � � ' ) ��� � � + � � � " � -  �
(16)

The filter coefficients . � � / �� � � of the IIR allpass filter structure

appear both in the feedforward branch and in the recursive feed-
back branch. Utilizing this symmetry inherent in allpass IIR filters

their computational complexity can be reduced further by reusing

the constant coefficients [10]. The fractionally delayed symbol es-

timates are obtained as01 3 � 6 � 8 � � 01 3 < �  > � ? > � (17)� 1 3 < � ? > C E � � %� � � ' � � � � � �  �> (18)

where the variable

� � � � � � � ��� � � G 1 3 < � ? > C E � I � C 01 3 < �  > � ? > C I � L + � �
(19)

is introduced merely for the purpose of conveniently illustrating

the signal paths in Fig. 1.

For IIR filters, it is relevant whether the delay values in (13)
map one-to-one or one-to-many, because each output sample eval-

uated at a desired delay is dependent on any previously processed

samples and their delay values through feedback. Whenever the

delay value (variable filter coefficients) of a given recursive filter
is changed, the output signal will become corrupted by transient ef-

fects [9]. In order to avoid transients the filter output is multiplexed

and the different constant delay values, .  > M / , processed in sep-

arate feedback loops (see Fig. 1). The symbol estimates, however,

at the estimated delay values 06 will suffer from transients, because

only a single feedback loop is used for the output signal 01 3 � 06 � 8 � .

3.2. FIR Structure

Optionally, FIR FD filters can be used to process the symbol es-

timates. Several advantages exist in using an FIR filter, since it

can be designed with exactly linear phase and the filter structure is
always stable with quantized filter coefficients. Furthermore, FIR

filters can be easily used in variable filter structures [12] since they

do not suffer from transient problems.

The transfer function of a generic, causal, non-variable E th-

order FIR filter can be expressed asO � � � � P ' � P � � " � � P Q � " Q � S S S � P � � " � � ��� � ' P � � " �
(20)

in which the filter coefficients . P � / have fixed values. To make the

FIR filter variable with an independent parameter  , we express
each filter coefficient as an W th-order polynomial in  :P � �  � � Y ' � � Y � �  � Y Q �  Q � S S S � Y % �  % � %� � � ' Y � �  �

(21)

Using Horner’s rule similarly as with the IIR filter coefficients we

can separate the variable coefficients  , of the polynomially ex-
pressed filter coefficients, from the fixed-value coefficients and ob-

tain O �  � � � � %� � � ' ) ��� � ' Y � � � " � -  �
(22)

A canonic implementation of FIR filters with polynomially ap-

proximated coefficients can be found in the form of a so-called FIR
gathering structure [10] (or generalized Farrow structure). The

fractionally delayed symbol estimates are obtained as

01 3 � 6 � 8 � � %� � � ' � � � �  �> � %� � � ' ^ ��� � ' 1 3 < � ? > C I � Y � � `  �>
(23)

Because FIR filters do not have recursion, � � � � is now indepen-

dent of the particular delay value  > .

4. EXAMPLES

In order to demonstrate how the proposed symbol synchronization

scheme can be used together with different kinds of FD filters, we

used it to measure the residual timing jitter of two FIR FD filter and

two IIR FD filter synchronizers. The FIR filters measured were a
second-order Lagrange [11] FD filter and a a b c -order Interpolator

II [13] FD filter. The measured IIR filters included a polynomi-

ally approximated first-order allpass Thiran [11] FD filter and a

third-order allpass equiripple phase delay FD filter [11]. As was
done in [4], we used OSR=2 and split the interval 6 d G C g h i � g h i G
(relative to the symbol interval) into two equal-length intervals. In

order to maximize (9) for (10) the LLF was approximated in the

two equal-length intervals using two separate third-order ( j � l )

polynomials. The LLF (9) was measured over m � o p QAM-64
symbols using root-raised cosine (RRC) matched filter pairs hav-

ing roll-off factor q � g h l i . The measurement results obtained

under a signal-to-noise (SNR) ratio of � g dB are shown in Fig. 2.

Furthermore, in Fig. 3 we demonstrate how the proposed gener-
alized symbol synchronization scheme allows us to measure the

same filters using another oversampling ratio, namely OSR=3.5.

The implementation complexities of the filters are given in Table

1.
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Fig. 2. Timing jitter mean of the different FIR and IIR FD filters
using OSR=2.

Table 1. Implementation complexity: Number of delay elements,
number of variable multipliers, and number of constant coeffi-
cients required for implementing each FD filter. If the coefficient-
symmetry of the Interpolator II [13] is exploited, only half of the
constant multiplier coefficients are needed.

FD Filter � � � � � � � � � � � ! � � #
IIR $ � � � ( � +1)

Thiran (polyn.) & $ $ $ '
Equiripple phase delay ( ( * =0.5) ' ' + ' & $
FIR � � ( � +1)( � +1)

Lagrange 2 2 $ $ ,
Interpolator II - ' - ' ' $ ( & + w/sym.)

5. CONCLUSIONS

A generalized synchronization scheme for polynomial IIR and FIR

FD filters allowing arbitrary oversampling ratios was proposed.

The technique was illustrated with example implementations of

two FIR FD filters and two IIR FD filters running at two different

oversampling ratios. It is left as a future research topic to analyze
the exact performance of different fractional-delay filters and the

reasons for the differences in results obtained with different over-

sampling ratios. Finally, the proposed scheme can be used also for

performing comparison between different symbol timing estima-
tion methods.
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[11] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay — tools for fractional delay design,”
IEEE Signal Processing Mag., vol. 13, no. 1, pp. 30-60, Jan.
1996.

[12] C. W. Farrow, “A continuously variable digital delay ele-
ment,” in Proc. 1988 IEEE Int. Symp. Circuits and Systems,
Espoo, Finland, vol. 3, pp. 2641-2645, June 7-8, 1988.
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