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Abstract— The design of FIR filter with constraints in frequency do-
main and/or time domain is considered. We further considered the design
specification without explicitly specified transition band. A constrained
eigenfilter is proposed to design FIR filter with various design constraints,
and without transition band specification. We have suggested the possible
design tradeoff between transition band bandwidth and the ripple size of
the filter. The proposed algorithm can design filters with optimal tradeoff
between transition band bandwidth and the peak constrained ripple size.
The eigenfilter formulation further allows the filter design specification
to incorporate time domain constraints. Various design examples are
presented to illustrate the versatility of the digital filter obtained by the
proposed filter design method.

I. INTRODUCTION

Linear phase FIR filters with equiripple passband and/or stopband
magnitude response are widely used. Parks-McClellan algorithm
(PM) and it’s variant that make use of the Remez exchange algorithm
are popular techniques to design filters with equiripple magnitude re-
sponse. An iterative recursive least squares algorithm was developed
in [8] to achieve Chebyshev or L∞ approximation. The algorithm
was subsequently applied to design FIR filters that are optimal in
L∞ and hence achieve equiripple response. It was shown to be able
to solve certain FIR filter design problems that neither the Remez
exchange algorithm nor least squares method [9] can.

One of such filter design problem is the peak constrained least
squares filter, which is originally proposed by Adam [6]. Adams
commented that both the L2 and the L∞ filter designs are inherently
inefficient. Therefore, he proposed to minimize the L2 filter design
error subjected to a constraint on the L∞ filter design error. The
design criteria is shown to be effective because Adams found that the
peak errors of the L2 optimal filter can be significantly reduced with
only a slight increases in the squares error. Similarly, the squares error
of the L∞ optimal filter can be reduced with only a slight increases
in the peak error of the L∞ optimal filter.

This paper discusses an iterative algorithm for designing con-
strained eigenfilters, which can be used to design digital filter with
various constraints, including peak constrained least square filter. We
will then show that the new iterative method allows users to make
tradeoff between transition band bandwidth and ripple levels. It is
noticed that with the same filter order, the lower the ripple level in
L∞ optimal sense, the wider the transition band bandwidth. This
can be easily derived from the design rules proposed by Herrmann
et al [10]. However, conventional filter design algorithm can only
achieve optimal ripple level with a given transition band. Such
design approach is not applicable in those design problems that
have transition band bandwidth being a design parameter under a
desired ripple size. It is the aim of this paper to propose a new
method to design filter with optimal tradeoff between ripple size and
transition band bandwidth where the transition band bandedges are
design parameters. The proposed design method can design multiband
filter as well as incorporate time domain constraint simultaneously,
whereas there is no efficient design method in literature that can
achieve all these goals.

To efficiently evaluate the performance of the proposed design
method, the design method proposed by Selesnick et al [4], which
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is commonly used for designing constrained least squares FIR
filters without specified transition band bandedges, is implemented
and compared with the proposed method. Selesnick’s method in
[4] formulates the peak constrained least squares design problem
as a constrained quadratic programming problem, which is solved
by Lagrange multipliers with a multiple exchange algorithm that
iteratively test the validity of the constraints by examining Kuhn-
Tucker conditions. Matrix inversion is needed to solve the Lagrange
multipliers which, in turn, are used to solve the constrained optimiza-
tion problem. However, matrix inversion is numerically inefficient
and unstable. This is especially true when the matrix size is large. In
addition, Selesnick’s method [4] and [5] cannot be used to design
filters with simultaneous time and frequency domain constraints,
because it does not converge for most cases. In reality, the Lagrange
multiplier formulation is not that robust in bandpass filter design. It
has been shown in [5] that the algorithm in [4] fails to converge when
the constraints set suffered from the cycling problem.

II. ITERATIVE REWEIGHTED EIGENFILTER

The amplitude response of a causal N -th order type-I linear phase
FIR filter is expressed by [3]

A(ω) =

M∑
n=1

2h(M − n) cos(ωn) + h(M), (1)

where h(n) is the impulse response of the filter and M = N
2

. The
above experssion can be simplified as

A(ω) = a
t
c(ω), (2)

where the superscript t denotes matrix transpose, and
a = [ a(0) a(1) · · · a(M) ]

t

= [ h(M) 2h(M − 1) · · · 2h(0) ]
t
, (3)

c(ω) = [ 1 cos(ω) · · · cos(Mω) ]
t
. (4)

Similar expression can be written for an odd order or odd symmetric
filter [3]. The filter design problem is to find a set of impulse response,
h(n), such that the associate amplitude response A(ω) approximates
a given frequency response D(ω), which is the same as finding
the coefficient a(n) in (3) to satisfy the given approximation prob-
lem. Various optimization criterion can be applied to the problem.
Vaidyanthan and Nguyen [2] defined the weighted L2 error as

ε =

∫
ω∈R

W (ω)(
D(ω)

D(ω0)
A(ω0) − A(ω))

2
dω,

=

∫
ω∈R

W (ω)(
D(ω)

D(ω0)
a

t
c(ω0) − a

t
c(ω))

2
dω,

= a
t
Pa. (5)

where

P =

∫
ω∈R

W (ω)(
D(ω)

D(ω0)
c(ω0) − c(ω))(

D(ω)

D(ω0)
c(ω0) − c(ω))

t
dω,

is a real, symmetric, and positive definite matrix, W (ω) is a non-
negative weighting function that controls the relative importance at
frequency domain, and R is the spectral domain under concern, with
R ⊂ [0, π], that includes all the passband and stopband regions but
exclude all the transition band regions.

Obviously, ε is minimized when a = 0. To avoid this trivial
solution, the obtained filter response at a particular frequency ω�
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in the passband is constrained to equal to the design specification d�.
As a result, the filter design problem is formulated as the following,

min
a

a
t
Pa subject to a

t
c(ω�)c

t
(ω�)a = d�. (6)

The dc response (ω� = 0) is commonly choosen for d� in lowpass
filter design. The solution vector a is given by the eigenvector of
the matrix P corresponding to the smallest eigenvalue. Such filter is
known as the eigenfilter in [1], [2].

III. A NOVEL ITERATIVE EIGENFILTER DESIGN ALGORITHM

The error of L2 optimal filter is shown in Fig.1(a). Observed from
Fig.1(a), a peak constrained filter with ripple size fit within upper
and lower bound (δU and δL) can be obtained by the addition of a
second filter (say ∆h as shown in Fig.1(b)) into it, such that ∆h
decreases the peak error of the given L2 optimal filter, i.e.,

hP CLS = hL2 + ∆h, (7)

where hPCLS and hL2 are the peak constrained least squares optimal
filter and L2 optimal filter respectively. To satisfy (7), ∆h should has
spectral response of ∆vk (j) at ωj for all ωj that is not bounded by
δU and δL and zero at all other spectral location, where ∆vk (j) and
ωj are observed from Fig.1(a) and is defined as,

vk(i) = εk(ωi),

∆vk
(i) =

{
[δU − εk(ωi)] if εk(ωi) > δU and ωi ∈ Φk
[εk(ωi) − δL] if εk(ωi) < δL and ωi ∈ Φk

(8)

This paper proposes to use eigenfilter method for designing ∆h,
where the squared error (∆εk) is formulated as,

∆εk = ∆ak
t
Qk∆ak, (9)

Qk =
∑
j s.t

ωj∈Φk

[
∆vk

(j)

D(ω0)
c(ω0) − c(ωj)

][
∆vk

(j)

D(ω0)
c(ω0) − c(ωj)

]t

+

∑
j s.t

ωj /∈Φk

c(ωj)c(ωj)
t
, (10)

ω0 = arg maxωj{∆rk (j)}, D(ω0) = max{∆rk (j)} and ∆ak is
half of the filter coefficient of ∆hk defined similar to (3). Since it
is almost impossible to design filter with several spectral peaks and
large regions with zero response. Fig.1(b) shows the actual spectral
response of ∆h obtained by eigenfilter design method with the design
specification that we’ve just discussed. Obviously, adding ∆h in
Fig.1(b) to hL2 will not reduce all the peak errors in Fig.1(a) and
result in a hPCLS that satisfies the given bound. To remedy this
problem, we formulated the design problem of ∆h in a recursive way
such that we’ll design a new ∆h to compensate for any discrepancy
until hPCLS in (7) satisfies the design specification. The details of
the iterative design method is described in the following.

1) Design hL2 with the design specifications N , ωc, δU and δL

using eigenfilter approach and form a0 using (3). Set iteration
index k = 1.

2) Label extremal frequencies and calculate ∆vk (i) by (8).
3) Use Qk defined in (10) to compute ∆ak as the eigenvector

corresponds to the minimum eigenvalue of Qk.
4) Update the filter coefficients (i.e. ak) by ak = ∆ak + a(k−1).
5) Stop when all the peaks are bounded within the upper and lower

bound (δU and δL), or when k > 100; otherwise set k = k+1
and go to Step 2.

IV. INTERPRETATIONS AND EXTENSIONS

A first glance at the proposed algorithm looks like that it is a variant
of the Remez exchange algorithm 1 in [7]. Although the proposed
algorithm is similar to the Remez exchange algorithm 1 in [7], there
are fundamental differences between Remez exchange algorithm
and the proposed algorithm. For simplicity, we compared the PM

algorithm, an implementation of Remez exchange algorithm for filter
design, with the proposed algorithm. Firstly, the number of reference
set frequencies in PM is fixed and does not change throughout the
algorithm, whereas the number of constraint set frequencies does
change and is generally smaller than the number used in the PM
algorithm.

Secondly, it is interesting to note that there is no minimum δU

and δL below which the proposed algorithm fails to converges. If δU

and δL are taken to be small, then the transition band between the
passband and stopband simply becomes wider. On the other hand,
the transition band bandwidth is fixed in PM algorithm. As a result,
there exists an optimal δU and δL. Beyond that, the PM algorithm
does not converge. Therefore, the proposed algorithm offers a design
tradeoff between δU and δL with the transition band bandwidth.
Similar design tradeoff is also available in [4].

Compared to the design algorithm of [4], the proposed design
method does not involve Lagrange multipliers which prohibits the
non-convergent Lagrange multiplier formulation when incorporat-
ing other design constraints simultaneously (such as simultaneous
frequency domain and time domain constraints). Indeed, the pro-
posed design method inherits all the advantages of the eigenfilter
formulation which can easily incorporate various design constraints
simultaneously. Furthermore, the Lagrange multiplier formulation is
not that robust in bandpass filter design. It has been shown in [5]
that the algorithm in [4] fails to converge when the constraints set
suffered from the cycling problem. It is in contrast to the eigenfilter
formulation of the proposed design method that results in a versatile
digital filter design method for multiband filter with various time and
frequency design specifications. Design examples in the later part of
this paper will demonstrate this fact.

The proposed design method does not preclude the specification
of a transition band bandedges. If both the transition band bandedges
and the ripple sizes are specified simultaneously. It is possible that
no solution exists because the transition band cannot be arbitrary
sharp. Note that here a distinction is being made between the cut-off
frequency ωc and the bandedges frequencies (e.g. ωp ≤ ωc ≤ ωs in
lowpass filter design).

Finally, noticed that the proposed algorithm can be initialized
with different filters which will affects the convergence of the
algorithm. We further proposed to initialize the algorithm with the
best unconstrained L2 filters, such that there is no ambiguity about
the initial filter used in the iterative procedure.

V. DESIGN EXAMPLES
A. Example 1 - Peak Constrained Eigenfilter

A linear phase lowpass filter design specification with order N =
60, cut-off frequency ωc = 0.3π, W (ω) = 1 ∀ω, and the upper
and lower bound constraints on the amplitude response are equals
to δU (ω) = −δL(ω) = 0.04 = −27.9588 for ω ∈ [0, ωc], while
δU (ω) = δL(ω) = 0.02 = −33.98dB for ω ∈ (ωc, π] was designed
using the proposed method. The proposed algorithm converges at the
7-th iteration. The resulting magnitude response is shown in Fig.2(a).
At the same graph, the filter obtained by using the Selesnick’s method
in [4] is also shown.

The magnitude response of the linear phase lowpass filter desinged
by Selesnick’s method [4] with the same specification is shown
in the same figure. This implies that the filter obtained by the
proposed method can achieve the same performance as that obtained
by Selesnick’s method described in [4].

B. Example 2 - Constrained Equiripple Eigenfilter
In this design example, the design specification is the same as

that in Example 1, but with a different upper and lower bound
constraints on the amplitude response, where δU (ω) = −δL(ω) =
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0.008 = −41.94dB ∀ω, was designed using the proposed method.
The proposed method converges in 18 iterations. The magnitude
response of the designed filter is shown in Fig.2(b). In the same figure,
the magnitude response of the linear phase lowpass filter designed
by Selesnick’s method [4] with the same design specification is also
shown.

Notice that the spectral shape of the filter obtained by Selesnick’s
method almost overlaps with that of the proposed method. In this
example, it showed that when the upper and lower bound constraints
(δU and δL) on the amplitude response is low enough, the proposed
method will achieve equiripple filter. Furthermore, the designed filter
is L∞ optimal, as it has the same spectral shape as the L∞ optimal
design by Selesnick’s method in [4].

C. Example 3 - Transition Band bandedges Tradeoff
In this design example, a lowpass filter with the same specification

as that in Example 1, but with a different upper and lower bound
constraints on the amplitude response of the filter, where δU (ω) =
−δL(ω) = 0.001 = −60dB ∀ω, was designed using the proposed
method. The resulting magnitude response is shown in Fig.2(c),
which also includes a plot of the magnitude response of the filter
designed in Example 2.

In this example, it showed that when the upper and lower bound
(δU and δL) are further decreased, the transition band bandedges
will be adjusted automatically by the proposed algorithm. Digital
filters with various amplitude constraints are designed. The resulting
transition band bandwidth is reflected by the stopband bandedges,
which is the first frequency where the amplitude response of the
digital filter equals to δL(ω), is plotted in Fig.2(d) versus the stopband
ripple size δU (ω) or δL(ω) for ω ∈ (ωc, π].

The plot in Fig.2(d) shows that the transition band bandwidth can
be significantly reduces with only a slightly increases in the ripple
size and vice versa. The tradeoff is efficient as similar curve but with
different tradeoff can be found in [6].

D. Example 4 - Multiband Filters
1) Multiple Passband Filter: A filter with order N = 60, that

has multiple passband at ω ∈ [0, 0.2π) ∪ (0.4π, 0.6π) ∪ (0.8π, π],
and other design specification as W (ω) = 1 ∀ω, the upper and
lower bound constraints on the amplitude response of the filter equals
to δU (ω) = −δL(ω) = 0.02 = −33.98dB ∀ω was designed
using the proposed method. Fig.2(e) and 2(f) showed the magnitude
response obtained at the 0-th and the 8-th iteration respectively.
This example showed that the proposed design method can be used
to design PCLS multiple passband filters without any modification,
whereas Selesnick’s Lagrange multiplier method [4] cannot be used
to achieved the same result without modification [5].

2) Multiband Filter with Arbitrary Spectral Response Constraints:
In this example, the design of a linear phase filter with order N =
80, that has multiple passband at ω ∈ [0, 0.1π) ∪ (0.5π, 0.66π) is
considered. The spectral weighting function W (ω) = 1 ∀ω and the
amplitude response of the filter is constrained to satisfy the follows
upper and lower bound constraints

δU (ω) = −δL(ω) =

⎧⎨
⎩

0.01 0 ≤ ω ≤ 0.1
0.12ω2 0.1 < ω ≤ 0.32
0.005 0.32 < ω ≤ 0.5
0.01 0.5 < ω ≤ 0.66
0.03 0.66 < ω ≤ 1

. (11)

The proposed method converges at the 25-th iterations with the above
design specification, and the magnitude response of the obtained filter
is shown in Fig.2(g).

To test the robustness of the proposed design method, the upper
and lower bound constraints on the amplitude response of the filter
at the stopband region in ω ∈ (0.66π, 1] is reduced to δU = −δL =
0.0024. The proposed method converges at the 44-th iteration with
the above design specification, and the magnitude response of the

obtained filter is shown in Fig.2(h). Because the ripple size is small
enough, the magnitude response exhibits equiripple properties. At
the same time, it can be observed that the transition band located
around ω = 0.66π has a large bandwidth in Fig.2(h) than that
observed in Fig.2(g). This example showed the automatic transition
band bandwidth adjustment capability of the proposed algorithm with
respect to the change in ripple size. Furthermore, noticed that the
transition band bandwidth in other regions of the filter in Fig.2(h)
remains the same as that in Fig.2(g). This demonstrated the effect on
transition band bandwidth tradeoff with the ripple size is localized.

Finally, we can concluded from this example that the proposed
filter design method can be used to design digital filter with arbitrary
spectral response, which cannot be easily achieved by other method
presented in literature [4], [5].

E. Example 5 - Nyquist Filter
Nyquist filter was designed to demonstrate the versatility of the

proposed design method, because it has strict time domain response
requirement in the resulting digital filter. The Nyquist filter is a K-th
band filter with filter impulse response, h(n), being zero for n =
±K, ±2K, ±3K, · · ·. Furthermore, the bandedge frequencies ωp

and ωs of the Nyquist filter satisfies the condition ωp +ωs = 2π/K.
Noticed that if we initialize the proposed design method with an

arbitrary K-th band filter that does not satisfy the Nyquist filter design
specification as mentioned above. The convergence of the algorithm
will be very slow. This is because the additive filter ∆h is not efficient
in correcting the violation in time domain constraints than that of
frequency domain constraints. Therefore, to design Nyquist filter, we
initialize our algorithm with an arbitrary designed Nyquist filter. In
our simulation, we choose to use the Nyquist filter design method,
which was proposed by Vaidyanthan et al in [1], to design the initial
filter. The design method is essentially the same as the proposed
method but with the specification of the transition band. Once the
initial filter is designed, the proposed design method will optimize
the filter towards other design constraints as detailed in the following
examples. Noticed that although the initial filter is designed with a
specified transition band bandedges, the transition band bandwidth
will be optimized with the proposed design method to provide optimal
tradeoff with the specified ripple size.

1) Peak Constrained Nyquist Filter: The design of a Nyquist
filter with order N = 38 and transition band bandedges at ωp =
0.15π and ωs = 0.25π, such that ωp + ωs = 0.4π = 2π/5 is
considered. The upper and lower bound constraints on the amplitude
response of the filter under concern is δU = −δL = 0.005.
The Nyquist criteria constrained the filter to have h(n) = 0 for
n = ±5, ±10, ±15, · · ·. The proposed design method converges at
the 33-th iteration with the above design specification, and the time
domain and magnitude responses of the obtained filter is shown in
Fig.2(i) and 2(j) respectively.

2) Equiripple Nyquist Filter: The design of the Nyquist filter with
the same design specification as that in the above example (example
5.1) is considered, where the constraints on the amplitude response
is lowered to δU = −δL = 0.002. The proposed design method
converges at the 99-th iteration with the above design specification,
and the time domain and magnitude response of the obtained filter
is shown in Fig.2(k) and 2(�) respectively.

Observed from Fig.2(k), the magnitude response of the filter ex-
hibits equiripple property. Furthermore, the transition band bandwidth
of the filter in Fig.2(k) is wider that that in Fig.2(i). This is due to
the smaller ripple size of the design specification for the filter in
Fig.2(k) and hence results in transition band bandwidth tradeoff with
the ripple size. In addition, the resulting transition band bandedges are
at ωp = 0.125π and ωs = 0.275π, which satisfies ωp + ωs = 2π/5.
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Both design examples demonstrated the ease in incorporating
various design constraints into the proposed design method. It further
showed the effectiveness of the proposed design method to design
optimal filters that satisfy various design constraints.

VI. CONCLUSIONS

We have proposed a constrained eigenfilter design algorithm, which
can be used to design, peak constrained least squares FIR filters
with multiple passbands and various time and frequency constraints
that other algorithms in literature cannot achieve. The algorithm has
exploited the design of FIR filter without explicit specification of the
transition bands. We showed that the proposed design method allows
the tradeoff between ripple sizes and transition band bandwidth.
Although we have not proven the convergence of the proposed
algorithm in the paper, the algorithm is found to converge efficiently
for the large amount of design examples considered. Indeed the
algorithm converges rapidly for all the design examples presented
in this paper.

The algorithm has shown to be very flexible in term of the
design specifications. Both frequency domain and time domain design
constraints can be efficiently incorporated into the proposed algorithm
without compromising the performance of the proposed algorithm.
Design examples are presented to demonstrate this fact.
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Fig. 1. (a) Actual error response of a lowpass filter at k-th iteration. (b)
Spectral response of ∆h at k-th iteration.
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Fig. 2. Example 1 (a) Frequency response. Example 2 (b) Frequency
response. Example 3 (c) Frequency response. (d) Bandedges tradeoff curve.
Example 4.1 (e) Frequency response at 0-th iteration. (f) Frequency response
at 8-th iteration Example 4.2 (g) Peak constrained stopband. (h) Equiripple
stopband. Example 5.1 (i) Frequency response. (j) Impulse response. Example
5.2 (k) Frequency response. (�) Impulse response.
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