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ABSTRACT

DSP applications, such as digital filters, are often
multiply-accumulate (MAC) intensive. Furthermore,
many applications require a deeply embedded low-
power, high-speed solutions. Their physical
implementation continues to be a challenge. A MAC-free
bandpass and bandstop digital filter design paradigm is 
presented that can meet demanding performance and 
packaging requirements. Furthermore, the filter
technology can be readily assimilated into modern ASIC
and FPGA-enabled designs.

1. INTRODUCTION

High-end digital filter algorithms are notoriously MAC-
intensive and therefore present a number of real-time
implementation challenges. To overcome this barrier,
wireless communication engineers have looked for relief in 
the form of the ubiquitous digital downconverter, or
channelizer [1,2]. Channelizers are a core infrastructure
technology that accepts signals at a high data rate and 
export a baseband signal at a decimated rate. The
channelizer, shown in Figure 1, consists of:

• a front-end data acquisition system (analog anti-
aliasing filter and ADC running at a rate fs Sa/s),

• a digital mixer and attendant direct digital
synthesizer (DDS) that heterodynes a desired
subband down to DC,

• a multiplier-less Nth-order cascade integrator-comb
(CIC) filter consisting of integrators and M-delay
comb filter (see insert). The CIC filter accepts data 
at a rate fs Hz and exports data at a decimated R rate 
fout = fs/R. The magnitude frequency response of a 
CIC filter has a sin(x)/x envelope, and

• a low-order programmable FIR, running at the
decimated rate, that shapes CIC output spectrum.

Currently commercial channelizers are manufactured and 
distributed by Intel, National, Texas Instruments, Intersil, 
and others. They are intrinsically lowpass, multi-rate,
digital filters that extract information from a specific
subband by heterodyning (mixers and DDS) a signal down 
to baseband. Heterodyning, unfortunately, adds to system 

cost, complexity, and power dissipation. In addition,
commercial data rates are typically bounded below 100-
300MHz. As a result, channelizer-enabled solutions must
often include multiple IF sections in order to translate 
high-frequency signals down to the channelizer data rate. 
Each IF stage can add an additional $10-$100 to the final 
solution [3]. It is therefore highly desired to develop new 
embeddable signal processing agent that can implement
band-selective filters at high-speeds and low-complexities.

2. CHANNELIZERS

The Nth-order CIC filter, shown in Figure 1, is defined by a 
transfer function given by:

HCIC(z) = (1-z-S)N/(1-z-1)N 1.

where S=RM, R is the decimation index, and M is comb
filter delay. The transfer function is that of N cascaded S-
sample moving average FIRs. The Nth-order CIC filter
possesses N-poles at DC (i.e., z=1.0), and S-zeros of 
multiplicity N located on the unit circle at z=ej2πk/S, k∈[0,S).
The N zeros located at z=1 cancel an equal number of zeros 
at the same location, resulting in a filter having a high DC 
gain of a lowpass filter. Pole-zero cancellation is insured 
because all the filter coefficients are exactly unity.
Furthermore, since all CIC filter coefficients are ternary 
valued {0,±1}, no general-purpose MAC unit is required to 
implementing a filter. Because of this, CIC filter can operate 
at high data rates with limited complexity. 

The dynamic range requirements of an Nth order CIC 
filter are defined in terms of a worst case gain G=(S)N,
which occurs at DC. In practice, the run-time dynamic 
range requirements of a CIC system can easily exceed 64-
bits in practice. Since a CIC is multiplier-free, the tangible 
effects of a high internal gain are wide internal data paths 
and extended precision 2's complement adders. 

3. CIC-ENABLED BANDPASS FILTER

Unfortunately, today’s programmable bandpass, or
bandstop filter design methodologies invariably lead
MAC-bound solutions, limiting their effective bandwidth 
and adding to their complexity. In concept, a bandpass 
filter having a CIC-structure could be realized by moving 
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the pole-zero cancellation points to a location on the
periphery of the unit circle (z=ejθ) other than DC
(z=ej0=1.0). Unfortunately, this would require a filter of the 
form:

H(z)=(1-z-RM)N /(z2+αz+β)N. 2.

This resulting filter has non-unity coefficients and
therefore assumes an additional MAC penalty that can 
deny its use in mobile (low-power) applications. If,
however, bandpass or bandstop filters could be defined in 
the context the MAC-free CIC filter, then a potentially 
viable embeddable solution may result. 

Historically, pole locations are defined in terms of the 
roots of an Mth-order polynomial Ψi(z) having real valued 
coefficients ai  where:

Ψi(z)=a0+a1z
-1+…+aMz-M 3.

For example, to place poles at z=ej2π/8 would require a 2nd

order polynomial of the form P(z) = 1+1.848 z-1+z-2, where 
the coefficients are assumed to be known to infinite
precision. There are two problems with this paradigm. First 
it is MAC intensive. Secondly, finite wordlength effects 
will invariably result in incomplete pole-zero cancellation, 
introducing both performance and stability problems.
Fortunately, a solution does exist and it is  based upon the 
polynomial manipulation schemes used in algebraic coding 
theory [4]. The data found in Table 1 examines the
polynomial studied in Equation 3 for ternary valued
coefficients (i.e., ai ∈{0, ±1}), insuring a MAC-free filter 
design. Continuing, let Ψj(z) be generated as:

Ψj(z)=(1-z-i)/ΠΨi(z); ∀i<j 4.

where i is relatively prime to j and Ψj(z)) has poles residing 
on the periphery of the unit circle in the z-plane (i.e., 
z=ej2kπ/S). Some of these polynomials are tabled in [4] and 
again Table 1, along with their critical frequencies. For 
example, the roots of Ψ3 are located at normalized
frequencies 2π/3 and 4π/3, and correspond to real
frequencies f=±fs/3. The number of roots located on the 
periphery of the unit circle is given by the Euler “phi” 
function φ(i). Replacing the integrators, shown in Figure 1 
(i.e., Hi(z)=1/(1-z-1)), with recursive filters Hi(z)=1/Ψi,
defines a bandpass filter whose poles are located on the 
unit circle with a transfer function given by: 

Hi(z)=(1-z-S)N/(Ψj)
N 5.

where filter Ψi(z) has only ternary valued coefficients, and 
S is an integer multiple of i. Since filter coefficients in both 
the feedforward and feedback paths are ternary valued, 
exact pole-zero cancellation can be guaranteed at the
filter's critical frequency.

For illustrative purposes, consider the filters found in 
Table 1 that are also divisible by 12 (shown as shaded 
entries), with magnitude frequency responses shown in 
Figure 2. The filter Hi(z) has pole-zero cancellations of 
multiplicity N, at z=ejθ, for some θ. Each realized filter has a 
|sin(x)/x|N magnitude frequency responses centered about 
the critical frequencies given in Table 1. The nulls are 
defined by the zeros of the sin(x)/x and are located on 
θ=2kπ/S radian centers, except where poles reside.

There are several design parameters that can be used to 
adjust the sensitivity and frequency selectivity of the CIC-
enabled bandpass filters. The filter’s bandwidth and center 
frequencies are established by S=MR which defines the 
number of unit circle zeros of multiplicity N (see Figure 3).
The depth of the stopband, and steepness of the filter 
skirt, are primarily influenced by the order parameter N.
Increasing any of these parameters will, however, increase 
the internal worst-case gain given by G=(S)N. For example, 
for S=MR=48 and N=3, worst case internal gain is G=(48)3

≤217 which means that adders must have 17-bits of
additional “headroom” (extended precision). The maximum 
side lobe gain is given by H(ej(ϕ+θ))=2N/|(1-ej(3π/S))|N and the 
ratio of the maximum filter gain to maximum side lobe gain 
is given by:

∆G=SN|(1- ej(3π/S))|N /2N 6.

For S>>1, which is the typical case, Equation 6 can be 
approximated to be:

∆G=(3π)N/2N=(1.5π)N 7.

Refer to Figure 2 which reports a filter design for N=3.
Based on Equation 7, the differential gain between the 
main lobe and maximum side lobe is approximately 40 dB
which is shown to be the case.

3. MODES OF OPERATION

For wireless applications, the bandpass channelizer can 
replace existing digital downconverters as well as eliminate 
the need for mixers and DDS systems. The bandpass CIC-
enabled filter can operate in a critical, over, or
undersampled mode. The first two regimes are easily 
realized by direct implementation of Equation 5.
Oversampling requires the use of an IF ADCs (e.g., Analog 
Devices AD9870). IF ADCs have analog sample and hold 
circuits that operate at speeds much higher than the ADC 
digital sample rate [5]. For example, a 2.4 GHz IEEE 802.11a 
OFDM system has an information bandwidth of 20 MHz,
consisting of 64 0.3125 MHz subbands, of which 52 only 
are used. The “rule-of-thumb” undersampled rate would be 
50 Sa/s, sending the 2.4 GHz carrier down to a baseband 
frequency (2.4 GHz) mod(50 MHz)=0 Hz. Information,

II - 398

➡ ➡



coded in a subband near the center line located at 2.4 GHz
is thereby translated down to baseband for processing by 
a back-end signal processor. The analogy sample and hold 
circuits of the ADC, however, would need to operate at a 
much higher RF or IF frequency.

To illustrate the mechanics of an undersampled CIC 
bandpass filter, consider then the data shown in Figure 4 
which is based on the dual passband filter displayed in 
Figure 3 clocked at 12 MHz. Assuming that the higher 
subband is of interest, decimating the filter output by 
R=12, will result in undersampling with the subbands 
centered about 1MHz and 5 MHz aliased down to DC. A 
low-order digital filter operating at the ADC rate is used to 
attenuate energy originally residing in the 1 MHz subband. 
The CIC-bandpass filter output is then the subband
originally located about 5 MHz. This process can be
generalized.

4. BANDSTOP FILTERING

The developed bandpass CIC filter reported in this paper 
has transfer function given by Hi(z)=(1-z-S)N/(Ψi)

N

(Equation 5). The filter is also linear phase having a group 
delay τg= N(S-1)/2. The complement version of Hi(z),
denoted Gi(z), is given by [6].

Hi(z)+Gi(z)=1 7.

In particular, if Hi(z) is a highly selective bandpass filter, 
then Gi(z) is a highly selective “notch” filter. A bandstop 

version of the CIC-bandpass filter shown in Figure 3 is 
reported in Figure 5.

2. SUMMARY
A design methodology is presented for programmable
high-speed low-complexity bandpass and bandstop digital 
filters. The filters gain their performance advantage by 
eliminating the need for multipliers. Since the realized filters 
are multiplier-free, they are excellent candidates for
embedding into ASIC or FPGA -centric designs.
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Table 1: Ternary-valued polynomials, roots, and 
critical frequencies (θ1 positive baseband frequency, 
θ2 positive baseband frequency)
Ψi a =[a0, a1, a2, … ak] θ1 θ2 φ
Ψ1 [1,-1] 0 2π 1
Ψ2 [1,1] 2π/2 2π/2 1
Ψ3 [1,1,1] 2π/3 4π/3 2
Ψ4 [1,0,1] 2π/4 6π/4 2
Ψ5 [1,1,1,1,1] 2π/5

4π/5
8π/5
6π/5

4

Ψ6 [1,-1,1] 2π/6 10π/6 2
Ψ7 [1,1,1,1,1,1,1] 2π/7

4π/7
6π/7

12π/7
10π/7
8π/7

6

Ψ8 [1,0,0,0,1] 2π/8
5π/8

14π/8
10π/8

4

Ψ9 [1,0,0,1,0,0,1] 2π/9
4π/9
8π/9

16π/9
14π/9
10π/9

6

Ψ10 [1,-1,1,-1,1] 2π/10
6π/10

18π/10
14π/10

4

Ψ11 [1,1,1,1,1,1,1,1,1,1,1] 2π/11
4π/11
6π/11
8π/11

10π/11

20π/11
18π/11
16π/11
14π/11
12π/11

10

Ψ12 [1,0,-1,0,1] 2π/12
10π/12

22π/12
14π/12

4

Figure 1: Conventional signal processing heterodyne
solution involving a channelizer (a.k.a., digital down
converter). The Nth order channelizer consists of N
integrators and N delay M comb filter, separated by a
decimate-by-R circuit. 

II - 399

➡ ➡



6.
Figure 3: Frequency selectivity for CIC-enabled filter H12(z)
using Ψ12=[1,0,-1,0,1], N=3, and S=24, 48, and 96.

Figure 4: Example of pre-filtering used in undersampling 
application.

Figure 5: Conversion of the bandpass filter, shown in Figure 3, 
to a stopband filter.

Figure 2: Examples of selected CIC-enabled bandpass filters 
having N=3 and S=48.
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