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ABSTRACT

This paper presents the design of complex allpass filters that
satisfy a desired degree of flatness and a desired phase at any
specified frequency point. The set of linear equations are
derived based on the specifications of the flatness and the
values of the phase at the given frequency points. The filter
coefficients are obtained by solving this set of equations.

1. INTRODUCTION

This paper treats the design of complex allpass filters with
given degrees of flatness at prescribed frequency points.

The complex allpass filters are used in the design of even
degree IIR digital filters [1], [2]. The characteristics of de-
signed IIR filter are dependent on a degree of flatness at
specific frequency points of the complex allpass filter, and
on the approximation of its phase. The problem of the all-
pass filter phase approximation is treated in [1], [3], [4], [5],
[6]. The design of a real allpass filter with specified degree
of flatness at the frequency points ω = 0 and ω = π is
proposed in [3].

The main idea of this paper is to generalize the method
[3] for the design of complex allpass filters having the de-
sired degree of flatness at any prescribed frequency point.

The paper is organized as follows. The equations for
maximally flat group delay of an all pole filter are derived
in Section 2. The design of complex allpass filters based
on these equations is presented in Section 3. The method is
illustrated with two examples.

2. MAXIMALLY FLAT ALL POLE FILTER

Consider an all pole filter given by

D(z) =
1

F (z)
, (1)

where

F (z) =
N∑

n=0

fnz−n, (2)
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and fn are complex coefficients, i.e. fn = rnejφn , where rn

is the amplitude and φn is the phase of fn. Coefficients fn

can also be expressed as fn = fRn + jfIn, where fRn and
fIn are the real and the imaginary part of fn, respectively.

The Fourier transform of fn, n = 0 . . . N , F (ejω) is
given by

F (ejω) =
N∑

n=0

fne−jωn (3a)

=
N∑

n=0

cos(ωn − φn)rn

− j

N∑
n=0

sin(ωn − φn)rn. (3b)

The phases of D(ejω) and F (ejω) are related as

φD(ω) = −φF (ω). (4)

The group delay is the negative derivative of the phase, given
by

G(ω) = − d

dω
{φD(ω)} =

d

dω
{φF (ω)}. (5)

The conditions for maximally flat group delay are as fol-
lows,

G(ω) = τ (6a)

G(k)(ω) = 0, k = 1 . . . K (6b)

where τ is the desired group delay, G(k)(ω) indicates the
kth derivative of G(ω), and K is an integer.

Using (3b) and (5), the negative derivative of the phase
φD(ω) can be written as

−dφD(ω)
dω

= − d

dω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1

⎛⎜⎜⎜⎜⎝
N∑

n=0

sin(ωn − φn)rn

N∑
n=0

cos(ωn − φn)rn

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

(7)
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By performing some simple trigonometric transforma-
tions, we arrive at,

d

dω

{
N∑

n=0

r(n) sin(ωn − φD(ω) − φ(n))

}

=
N∑

n=0

rn cos(ωn − φD(ω) − φn)
(

n − dφD

dω

)
= 0. (8)

Using (5) and the condition (6a) it follows that,

N∑
n=0

rn cos(ωn − φD(ω) − φn) (n + τ) = 0. (9)

From the condition (6b), for k = 1, we have that,

d2

dω2

{
N∑

n=0

r(n) sin(ωn − φD(ω) − φ(n))

}

= −
N∑

n=0

rn sin(ωn − φD(ω) − φn)
(

n − dφD

dω

)2

−
N∑

n=0

rn cos(ωn − φD(ω) − φn)
d2φD

dω2

=
N∑

n=0

rn sin(ωn − φD(ω) − φn) (n + τ)2 = 0. (10)

By continuing in the same way for all values of k, we
obtain the following set of equations,

N∑
n=0

(n + τ)k cos(ωn − φD(ω) − φn)rn = 0,

k odd, (11a)
N∑

n=0

(n + τ)k sin(ωn − φD(ω) − φn)rn = 0,

k even, (11b)

where k = 0 . . . K + 1. By setting k = 0 and k = 1,
the equations for the desired phase, φD(ω), and the desired
group delay, τ follow. The remaining K equations satisfy
the condition (6b).

Using f0 = r0e
jφ0 = 1 the equations (11) can be writ-

ten as,

N∑
n=1

(n + τ)k cos(ωn − φD(ω) − φn)rn = −τk cos(φD(ω)),

k odd, (12a)
N∑

n=1

(n + τ)k sin(ωn − φD(ω) − φn)rn = τk sin(φD(ω)),

k even, (12b)

or

N∑
n=1

{
(n + τ)k cos(ωn − φD(ω))

}
fRn

+
N∑

n=1

{
(n + τ)k sin(ωn − φD(ω))

}
fIn

= −τk cos(φD(ω)), k odd, (13a)
N∑

n=1

{
(n + τ)k sin(ωn − φD(ω))

}
fRn

−
N∑

n=1

{
(n + τ)k cos(ωn − φD(ω))

}
fIn

= τk sin(φD(ω)), k even. (13b)

Equations (13) are the general equations for the maxi-
mally flat group delay at any frequency point. The solution
of this set of equations are the coefficients of the complex
allpass filter.

One special case of (13) is obtained for fIn = 0, ω = 0
and ω = π. In this case, the phase φD(ω) can be 0 or π de-
pending on the sign of

∑N
n=0 fRn. This result is presented

in [3] in the form

N∑
n=1

(n + τ)2k+1fRn = −τ2k+1, (14)

N∑
n=1

(−1)n(n + τ)2k+1fRn = −τ2k+1. (15)

3. COMPLEX ALLPASS FILTER

Consider a complex allpass filter A(z) in the form

A(z) = z−N F̃ (z)
F (z)

= z−N D(z)

D̃(z)
. (16)

Here F̃ (z) is the result of first conjugating the coefficients
of z in the function F (z), and then replacing z with z−1,
[7]. Suppose that the group delay of D(z) is the desired
group delay τ discussed in Section 2. The group delay of
the complex allpass filter, τA, is given by

τA = N + 2τ, (17)

so that the desired group delay τ can be written as

τ =
τA − N

2
. (18)

If τA < N , the poles of A(z) are outside of the unit
circle [3].
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The phase φA(ω) of A(z) can be expressed as

φA(ω) = −ωN + 2φD(ω), (19)

where the desired phase φD(ω) is given by

φD(ω) =
φA(ω) + ωN

2
. (20)

When τ > 0 the phase of A(z) satisfies [8]:

• φA(2π) = φA(0) − 2Nπ,

• φA(ω) exhibits monotonic decreasing behavior.

In the following two examples we illustrate the design
of maximally flat group delay complex allpass filters using
(13), (18) and (20).

Example 1: In this example we design the complex all-
pass filter with these characteristics:

At frequency point ω0/π = 1/3 the desired phase is
φA0/π = −4, and the specified degree of flatness is K0 =
8. Similarly, at the frequency points ω1/π = 4/5, and
ω2/π = 8/5 the desired phases are φA1/π = −10.5, and
φA2/π = −20.5, respectively. The corresponding degrees
of flatness are the same, i.e. K1 = K2 = 6. The specified
group delay is the same in all frequency points and is equal
to τA = 14.

The number of coefficients N , is (K0+K1+K2+6)/2.
From (18) and (20) it follows that τ = 0.5, φD0 = 0.5236,
φD1 = −0.1571 and φD2 = 0.4712. If we substitute these
values into (13) we obtain a set of linear equations with 26
unknowns; 13 for fRn and 13 for fIn, of the form

Af = b (21)

The first 10 rows of A correspond to the first frequency
point ω0, the next 8 rows correspond to the second fre-
quency point ω1, and the last 8 rows correspond to ω2. The
first 13 rows of the vector f are the values fRn, while the
last 13 rows are the values of fIn. The entries in b are the
right side in (13). Solving the set of equations (21), the co-
efficients of the complex allpass filter are computed and are
listed in Table 1.

n fn n fn

0 1.00000 7 –0.28938 + 0.09528j
1 0.09467 – 0.94300j 8 0.16238 + 0.03622j
2 –0.50693 + 0.44365j 9 –0.07009 – 0.08795j
3 0.84485 – 0.14725j 10 –0.00941 + 0.04869j
4 –0.55877 – 0.53642j 11 0.01119 – 0.01490j
5 0.10853 + 0.51413j 12 –0.00891 + 0.00128j
6 0.18520 – 0.42986j 13 0.00100 + 0.00167j

Table 1. Filter coefficients in Example 1
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Fig. 1. Example 1

Fig. 1 illustrates the group delay and the phase of the
designed allpass filter.

Example 2: In this example we design the complex all-
pass filter with the prescribed degree of flatness and phase
at five frequency points, as follows: ω0/π = 1/3, ω1/π =
3/5, ω2/π = 1, ω3/π = 3/2 and ω4/π = 9/5. The degrees
of flatness are K0 = 4, K1 = 8, K2 = 6, K3 = 4 and
K4 = 8, respectively, while the phases are φA0/π = −6,
φA1/π = −12.5, φA2/π = −20.5, φA3/π = −28.5 and
φA4/π = −36.5, respectively. The group delay in all fre-
quency points is equal to τA = 24.

From (18) and (20) we have: τ = 2, φD0 = 1.0472,
φD1 = −0.7854, φD2 = −0.7854, φD3 = 2.3562 and
φD0 = −0.7854. The coefficients of the complex allpass
filter, which are listed in Table 2, result from solving the
equations (13). Fig. 2 illustrates the group delay and the
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phase of the designed filter.

n fn n fn

0 1.00000 11 0.52598 + 0.06816j
1 –0.32780 – 0.47823j 12 –0.49494 – 0.25491j
2 0.76126 + 1.04159j 13 –0.15125 + 0.43506j
3 1.16063 – 0.51237j 14 0.14680 – 0.16833j
4 –0.77454 + 0.14103j 15 –0.24035 – 0.03415j
5 1.13351 + 1.55667j 16 0.02809 + 0.08064j
6 0.51017 – 0.84977j 17 0.01145 – 0.07408j
7 –0.90543 + 0.96482j 18 –0.04378 + 0.00145j
8 0.96986 + 0.89534j 19 0.01513 + 0.00386j
9 –0.30326 – 0.65537j 20 –0.00190 – 0.00787j
10 –0.59011 + 0.98749j

Table 2. Filter coefficients in Example 2

4. CONCLUSIONS

A new method for the design of complex allpass filters is
presented. The designed filter satisfies the prescribed de-
gree of flatness as well as the prescribed values of phases at
any number of the frequency points. The filter coefficients
are obtained by solving the set of linear equations. The pro-
posed method can be useful for IIR filters design.
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