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ABSTRACT

The problem of determining the relative positions of speak-
ers in an array given noisy measurements of inter-speaker
ranges is considered. A closed-formposition estimator which
minimizes a weighted equation error norm is presented. The
information inequality is used to bound the position esti-
mate mean square error and to gauge the accuracy of the
closed-form estimator, which is shown to be nearly efficient.

1. INTRODUCTION

Many current techniques for multichannel rendering such
as Ambisonics [1], VBAP [2], and wavefield synthesis [3]
are benefited by or are dependent upon accurate speaker lo-
cation information. There are a wide variety of methods
available to propagate signals between array elements and
estimate inter-element distances. In this paper we study the
problem of determining the positions of multiple speakers
using noisy measurements of inter-speaker ranges.

Estimating the position of an object from range mea-
surements to a set of fixed positions—the problem of inter-
secting spheres—arises in navigation systems [4]. One es-
timation approach is to form an equation error relating the
unknown positions and range measurements [4]. The equa-
tion error is selected such that its norm is easily minimized
and it produces hypothesized ranges close to the measured
values when its norm is small.

The case of uncertainty in the reference element po-
sitions has been studied for the related problem of range
difference localization, with the result that the position es-
timate variance is increased as if the measurements were
more noisy [5, 6, 7].

The problem at hand is perhaps more closely related to
that of multidimensional scaling analysis (MDS) [8]. Mea-
surements of distance between pairs of points in an unknown
space are available and MDS seeks to make a map of the
relative positions of the unknown points in the lowest di-
mension space which captures the topology implied by the

input distances. Iterative methods are generally used.
Section 2 presents a closed-form speaker position esti-

mator as the minimizer of a weighted equation error norm.
In form, it is essentially a weighted MDS using an L2 norm.

In section 3 we study the accuracy with which the un-
known speaker positions may be estimated, using the infor-
mation inequality to gauge estimate mean square error. The
information inequality, often referred to as the Cramèr-Rao
Lower Bound (CRLB) states that the mean square error of
any unbiased estimator is at least as large as the Fisher In-
formation inverse [9, page 115, ff]. We argue that for any
given speaker, its position bound variance is similar to that
if all other speaker positions were known and the measure-
ment noise were increased. Finally, simulation results show
that the closed-form speaker position estimator has accuracy
comparable to the bound.

2. POSITION ESTIMATION

Let X be the N × P matrix of speaker locations xn where
N is the number elements and P is the dimension of the
space

X �

⎡
⎢⎣

x�
0

...
x�

N−1

⎤
⎥⎦ . (1)

The inter-element ranges rij are given by

rij = ‖ xi − xj ‖ . (2)

We assume that the measured inter-element ranges ρij are
corrupted with additive, independent Gaussian noise with
known variance

ρij = rij + εij ∼ N (rij , σ
2

ij), (3)

as would be the case using any number of accurate inter-
element signal arrival time estimates, and in the presence of
small estimation errors. (For instance, in the limit of large
Fisher Information, the maximum likelihood estimator is
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known to be unbiased and normally distributed.) Under this
assumption, the estimation problem becomes one of find-
ing the parameters that determine the mean of a Gaussian-
distributed measurement.

The maximum likelihood estimate is known to be ef-
ficient (unbiased with minimum variance) in the limit of
small estimate errors. In the case of estimating the parame-
ters determining the mean of a Gaussian distributed random
variable, the maximum likelihood estimate minimizes the
weighted sum of square hypothesizedmeasurement errors—
the differences between measured and hypothesized ranges.
Unfortunately the measurements are non-linear in the pa-
rameters of interest, and the maximum likelihood estimate
is difficult to compute directly.

Below, an equation error is developed such that it is
linearly related to the measurement error when errors are
small. The equation error has a weighted norm that can
be minimized over all speaker position sets directly via a
singular value decomposition of a matrix formed from the
inter-speaker range measurements.

Stacking squared instances of (1), and taking x0 = 0,
we have

2XX
� = ζ1� + 1ζ

� − R + εEE , (4)

where ζ is a column of the square range measurements from
x0

ζ =
[
ρ2

0,1 · · · ρ
2

0,N−1

]�
, (5)

R is a matrix of square range measurements excluding those
from x0

R =

⎡
⎢⎣

ρ2

1,1 · · · ρ2

1,N−1

...
. . .

...
ρ2

N−1,1 · · · ρ2

N−1,N−1

⎤
⎥⎦ , (6)

and εEE is an equation error. In the presence of separate
range measurements ρij and ρji it is suggested that a sym-
metric R be formed using [ρij +ρji]/2 as the corresponding
entries of R.

We estimate the positions of the speaker elements X̂ to
within an orthogonal transformation Q by constructing a
matrix using the P largest singular values of the singular
value decomposition of XX�. (It should be pointed out
that with only measurements of inter-element range, there
is no information to fix the orientation of the array.) This
matrix is known to minimize the sum of square equation
error elements over all position sets X in P dimensions [10,
appendix F]. Defining by

U ·D ·V� = XX� (7)

the singular value decomposition of XX�, our estimate of
position is given by

X̂ = U · D
1

2 ·Q. (8)

3. INFORMATION INEQUALITY

The information inequality states that the variance of any
unbiased estimator will be greater than or equal to the in-
verse of the Fisher Information, also known as the Cramèr-
Rao Lower Bound (CRLB)

var{X̂} � J−1

X̂
. (9)

The bound is useful in gauging the performance of the equa-
tion error minimizer, and in developing insight into the in-
formation contained in the range measurements.

The Fisher Information is given by

J
X̂

=
∂µ�

∂X̂
· Σ−1

R ·
∂µ

∂X̂�
, (10)

with µ defined as the collection of all inter-element range
measurements

µ� = [· · · rij · · · ] . (11)

Defining the unit vector pointing from element j to element
i as βij

βij �
xi − xj

‖xi − xj‖
, (12)

the sensitivity of the mean to changes in the ith element
position is

∂µ�

∂xi

=
[
0 · · · 0 βij 0 · · · 0

]
. (13)

When all but one, say x0, of the speaker positions are
known, the Fisher Information is the outer product of di-
rection vectors pointing from the unknown speaker to the
other N − 2 speakers, weighted by the respective inverse
measurement variances:

J0 = B�Σ−1B =

N−1∑
i=1

1

σ2

i

β
0iβ

�

0i. (14)

This interpretation is consistent with the notion that accu-
rate estimates are possible along directions having a large
number of elements or directions having small range esti-
mate variances.

When there are two unknown speaker positions (x0 and
x1), we write the Fisher Information relative to element x0,
J̃0, as the sum of the information in contained in the ranges
measured from x0 to the known speakers, and the informa-
tion in the range measured between the unknown elements.
Denoting by J0 and J1 the information contained in noisy
range measurements to the remaining known speaker loca-
tions relative to elements x0 and x1, the desired Fisher In-
formation J̃0 may be written as:

J̃0 = J0 +
β

01
β�

01

σ2

01
+ β�

01
J−1

1
β

01

. (15)
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Note that the additional information provided by the range
measurement between the two unknown positions takes on a
form similar to that of a summand in (14) with an increased
effective variance. This can be seen by comparing the term

1

σ2

i

appearing in (14), with

1

σ2

01
+ β�

01
J−1

1
β

01

appearing in (15)—the difference being an increase in the
estimate variance due to the unknown locations of both end-
points providing the range measurements.

The CRLB for speaker element x0 is

var{x̂0} � J−1

0
−

J−1

0
β

01
β�

01
J−1

0

σ2

01
+ β�

01
(J−1

0
+ J−1

1
)β

01

. (16)

When the range measurement to the unknown position is
available the variance is decreased. The decrease is large
when β

01
aligns with a major axis of the the error ellipse

implied by J0, i.e., when the new range measurement pro-
vides position information along a direction that was other-
wise poorly measured.

4. SIMULATION

The speaker array geometries shown in Figures 1 and 2 were
produced and simulated inter-element range measurements
were created by adding Gaussian noise to the actual ranges.
Using these simulated measurements, the closed form posi-
tion estimator was applied to estimate positions, which were
then compared to the actual speaker positions.

In addition, the theoretical Cramèr-Rao Lower Bounds
were calculated and 90% confidence ellipses were plotted.
The bounds were calculated using three scenarios for each
speaker location: one assuming that all other speaker lo-
cations were known, one assuming that all other locations
were unknown, and one assuming that all other locations
were unknown, but the relative orientation of the speaker
array was known. As expected, as seen in Figure 3, the
bound is tightest for the case of all other speaker positions
known. One can also observe that the information added by
including knowledge of the angular orientation shrinks the
confidence ellipse only slightly.

Simulation results not presented here show that as the
number of elements increases, the bound for the case of all
element positions being unknown approaches that of only
a single position being unknown. This is consistent with
the notion that with more elements come more range mea-
surements and therefore more position information. Addi-
tionally, as the elliptical bounds become more flattened, the
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Three Unknown Elements, sigma = 0.025
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CRLB 2 − all unknown
CRLB 3 − all unknown with rotation J

Fig. 1. Simulation result for three unknown locations.

spread between the all unknown and one unknown cases is
widened. As expected, arrays with elements in a line result
in variances that are high in a direction perpendicular to the
line of the array.

Error ellipses based on both including and excluding ar-
ray rotation information are very similar, except when the
array has a small number of elements.

In 1000-trial Monte Carlo simulations the closed form
estimator (8) was seen to be approximately unbiased with
variance equal to 1.5 times the Cramèr-Rao Lower Bound.

5. CONCLUSION

A closed-form estimator of speaker element locations using
inter-speaker range measurements was presented. Addition-
ally, the Fisher Information for the problem was calculated
and used to lend geometrical insight to the estimation prob-
lem. The estimator was applied to simulated noisy range
measurements and was shown to exhibit a variance about
1.5 times the theoretical minimum.
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Fig. 2. Simulation result for six unknown locations.
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