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ABSTRACT

A simple recursive tracking algorithm for moving sources is de-
veloped based on the time difference of arrival (TDOA) measure-
ments. The proposed algorithm uses location estimates obtained
from a stationary source localization algorithm and smoothes them
according to a general motion model for the source. The motion
model allows for source acceleration. A unified treatment of the
iterative maximum likelihood and closed-form least squares algo-
rithms for source localization by TDOA is presented. The ability
of the proposed tracking algorithm to track maneuvering sources
is demonstrated in simulation examples.

1. INTRODUCTION

The problem of passive tracking of moving sources is encountered
in many diverse applications such as electronic warfare, surveil-
lance, mobile user location in cellular communications and acous-
tic source localization in speech data acquisition systems. In pas-
sive tracking, the signal emitted by the source is utilized to de-
termine the location and velocity of the source. One approach to
passive tracking is to employ the time difference of arrival (TDOA)
between signals received at multiple sensors (receivers). This ap-
proach leads to a set of nonlinear equations whose solution rep-
resents the intersection of multiple hyperbolae corresponding to
TDOA measurements.

In this paper, we review the iterative maximum likelihood and
closed-form least squares algorithms for source localization by
TDOA. In particular, we provide a unified treatment of these al-
gorithms in order to compare their pros and cons. We propose a
simple recursive algorithm to track maneuvering sources by means
of smoothing the source location estimates obtained from a con-
strained least squares solution. The proposed tracker uses a gen-
eral motion model to fit the location estimates, resulting in initial
location and velocity, and acceleration estimates. The recursive so-
lution is implemented using the recursive least squares algorithm
where the “autocorrelation” matrix does not need to be computed
online. This provides a significant savings of the computational
cost. The ability of the proposed tracker to smooth the location
estimates, thereby improving the track estimate performance, is
demonstrated in simulation examples.

The paper is organized as follows. Section 2 reviews the max-
imum likelihood location estimator and derives a Gauss-Newton
solution for it. Closed-form least squares and iterative constrained
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Fig. 1. Two-dimensional TDOA source localization geometry with
four receivers.

least squares solutions are discussed in Section 3. Section 4 devel-
ops the proposed recursive tracking algorithm. Simulation exam-
ples are presented in Section 5.

2. MAXIMUM LIKELIHOOD LOCALIZATION BY TDOA

A two-dimensional source localization geometry using TDOA mea-
surements from N = 4 receivers is shown in Fig. 1. The objective
of source localization by TDOA is to determine the source location
s = [x, y]T (where T denotes the matrix transpose) by utilizing
N − 1 TDOA measurements obtained from N ≥ 3 receivers at
known locations ri = [xi, yi]

T , i = 1, . . . , N .
TDOA between signals received at a pair of receivers is de-

fined by
tij = tj − ti, i, j ∈ {1, . . . , N} (1)

where ti is the time it takes for the signal transmitted by the source
to arrive at the receiver ri, i.e.,

ti =
‖di‖

c
, i ∈ {1, . . . , N}. (2)

Here c is the speed of propagation for the transmitted signal, and
di is the range vector for the receiver ri:

di = s − ri, i ∈ {1, . . . , N}. (3)
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Using (1) and (2), the range difference of arrival (RDOA), gij , can
be defined as

gij = ‖dj‖ − ‖di‖, i, j ∈ {1, . . . , N} (4a)

= ctij . (4b)

Each RDOA measurement defines a hyperbola of possible source
locations. The source location is obtained from intersection of two
or more hyperbolae by solving the following set of nonlinear equa-
tions for s:

‖s − r2‖ − ‖s − r1‖ = g12

‖s − r3‖ − ‖s − r1‖ = g13

...

‖s − rN‖ − ‖s − r1‖ = g1N .

(5)

In practice, we have to deal with noisy RDOA measurements g̃1i

defined by
g̃1i = g1i + n1i, i = 2, . . . , N. (6)

Here n1i is the RDOA noise which is assumed to be Gaussian. The
RDOA noise covariance matrix is

Σ = E

⎧⎪⎨
⎪⎩

⎡
⎢⎣

n12

...
n1N

⎤
⎥⎦ [

n12 · · · n1N

]
⎫⎪⎬
⎪⎭ . (7)

Supposing that the signal received at each receiver ri is subject to
i.i.d. additive noise and that TDOAs are estimated by generalized
crosscorrelation [1], the covariance matrix can be shown to take
the form [2]

Σ = σ2
n

⎡
⎢⎢⎢⎢⎣

1 1/2 · · · 1/2

1/2
. . .

. . .
...

...
. . .

. . . 1/2
1/2 · · · 1/2 1

⎤
⎥⎥⎥⎥⎦ (8)

where σ2
n is the RDOA noise variance.

When the perfect RDOA measurements g1N are replaced by
their noisy counterparts g̃1N , (5) will no longer have a solution
except for N = 3. Under the Gaussian noise assumption, a maxi-
mum likelihood estimate of the solution can be found and is given
by [3]

ŝML = arg min
s

hT (s)Σ−1h(s) (9)

where

h(s) =

⎡
⎢⎢⎢⎣

‖s − r2‖ − ‖s − r1‖ − g̃12

‖s − r3‖ − ‖s − r1‖ − g̃13

...
‖s − rN‖ − ‖s − r1‖ − g̃1N

⎤
⎥⎥⎥⎦

(N−1)×1

. (10)

Equation (9) does not have a closed-form solution. A numerical
solution to (9) can be obtained recursively with the Gauss-Newton
(GN) algorithm (also known as the Taylor series method):

ŝML(k) = ŝML(k − 1) − (JT
k−1Σ

−1Jk−1)
−1

× JT
k−1Σ

−1h(ŝML(k − 1)), k = 0, 1, . . . (11)

where Jk is the Jacobian of h(s) evaluated at s = ŝML(k). A
major disadvantage of the GN algorithm is its vulnerability to di-
vergence unless it is initialized sufficiently close to the solution.

3. CONSTRAINED WEIGHTED LEAST SQUARES
SOLUTION

A closed-form solution to the source location can be derived in
several ways (see e.g. [4, 2, 5]). One particularly elegant approach
is based on the law of cosines [6]. In the geometry of Fig. 1, firstly
consider the triangle formed by the corner points s, r1 and r2.
Applying the law of cosines to this triangle yields:

‖d2‖2 = ‖d1‖2 + ‖r12‖2 − 2rT
12d1 (12)

where
rij = rj − ri, i, j ∈ {1, . . . , N}. (13)

From (4a), we have

‖d2‖2 = g2
12 + ‖d1‖2 + 2g12‖d1‖. (14)

Substituting (14) into (12) yields

[
rT

12 g12

] [
d1

‖d1‖
]

=
1

2
(‖r12‖2 − g2

12). (15)

In a general source localization scenario with N receivers,
applying the above steps to each triangle defined by the triplets
{s, r1, ri}, i = 2, . . . , N , and stacking the resulting row equa-
tions (15), we obtain

⎡
⎢⎢⎢⎣

rT
12 g12

rT
13 g13

...
...

rT
1N g1N

⎤
⎥⎥⎥⎦

(N−1)×3

[
d1

‖d1‖
]
3×1

=

1

2

⎡
⎢⎢⎢⎣
‖r12‖2 − g2

12

‖r13‖2 − g2
13

...
‖r1N‖2 − g2

1N

⎤
⎥⎥⎥⎦

(N−1)×1

. (16)

After solving the above matrix equation for the unknown range
vector d1, the source location is simply given by

s = r1 + d1. (17)

In terms of the noisy RDOA measurements, the matrix equa-
tion (16) becomes

Ay = b + η (18)

where

A =

⎡
⎢⎢⎢⎣

rT
12 g̃12

rT
13 g̃13

...
...

rT
1N g̃1N

⎤
⎥⎥⎥⎦ , b =

1

2

⎡
⎢⎢⎢⎣
‖r12‖2 − g̃2

12

‖r13‖2 − g̃2
13

...
‖r1N‖2 − g̃2

1N

⎤
⎥⎥⎥⎦

y =

[
d1

‖d1‖
]

, η =

⎡
⎢⎢⎢⎣

η1

η2

...
ηN−1

⎤
⎥⎥⎥⎦ .

Here η is the noise vector of the matrix equation (18). Comparison
of (16) and (18) yields

ηi =
1

2
n2

1,i+1 + n1,i+1‖di+1‖.
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The approximate matrix equation Ay ≈ b can be solved by
using a weighted least squares (WLS) criterion:

ŷ = arg min
y

(Ay − b)T W (Ay − b) (19)

= (AT W A)−1AT W b. (20)

The weighting matrix W is given by the inverse covariance matrix
of η. Assuming that nij is small (i.e., nij ≈ 0), the noise vector
η can be approximated by

η ≈

⎡
⎢⎢⎢⎣

n12‖d2‖
n13‖d3‖

...
n1N‖dN‖

⎤
⎥⎥⎥⎦ . (21)

Thus, under the small noise assumption, the weighting matrix is

W = TΣ−1T (22)

where

T = diag{1/‖d2‖, 1/‖d3‖, . . . , 1/‖dN‖}.
If the source is sufficiently away from the receivers, in which

case we have a large range-to-baseline ratio, the diagonal matrix
T can be replaced by the identity matrix, leading to

W = Σ−1. (23)

In practice, the large range-to-baseline ratio assumption has to be
made unless some prior information is available about the source
range.

Given the WLS estimate ŷ = [ŷ1, ŷ2, ŷ3]
T , the source loca-

tion estimate is given by

ŝ = r1 + [ŷ1, ŷ2]
T . (24)

The WLS estimate has two main problems. Firstly, the estimate
ignores the dependence between the entries of y = [y1, y2, y3]

T ,
i.e.,

y2
3 = y2

1 + y2
2 . (25)

Secondly, ŷ is biased (i.e., E{ŷ} �= y) because of the correlation
between A and η.

The dependence between the entries of y, specified in (25),
can be enforced into the solution by means of a nonlinear con-
straint to improve the estimation performance. To realize the con-
straint in (25), define a vector function f (·) that transforms a 2×1
vector to a 3 × 1 vector according to

f (x) =

[
x

‖x‖
]
3×1

, x ∈ R
2. (26)

Using the above parameterization, the constrained version of the
WLS criterion in (19) becomes

d̂1 = arg min
d1

(Af (d1) − b)T W (Af (d1) − b). (27)

The source location estimate is given by ŝ = r1 + d̂1. The
constrained WLS criterion does not have a closed-form solution.
However, unlike the GN cost function, the CWLS cost function
does not lead to divergence, although it may still have multiple
local minima [5]. To avoid local minima, we can use the WLS
solution as an initialization.

4. RECURSIVE SOURCE TRACKING

Suppose that location estimates of a moving source are calculated
on a regular basis at L time instants tk = kT , k = 0, 1, . . . , L−1.
Let ŝk denote the CWLS location estimate at time instant k. The
successive location estimates can be smoothed by using a source
motion model incorporating the initial location and velocity, and
constant acceleration. The source trajectory can be estimated by
utilizing the kinematic equation [7]

sk = s0 + v0tk +
1

2
at2k (28)

= M kξ. (29)

Here s0 and v0 are the source location and velocity at t0, respec-
tively, a is the constant source acceleration,

M k =

[
1 0 tk 0 1

2
t2k 0

0 1 0 tk 0 1
2
t2k

]

and

ξ =

⎡
⎣s0

v0

a

⎤
⎦

is the 6 × 1 source motion parameter vector. The unknown vector
ξ can be estimated from⎡

⎢⎢⎢⎣
M 0

M 1

...
M L−1

⎤
⎥⎥⎥⎦ ξ ≈

⎡
⎢⎢⎢⎣

ŝ0

ŝ1

...
ŝL−1

⎤
⎥⎥⎥⎦ . (30)

In most practical applications, the acceleration can be assumed to
be zero (i.e., a = 0).

To track maneuvering sources, (30) can be solved recursively,
using

ξ̂k = Φ−1
k φk (31)

where

Φk = λΦk−1 + M T
k Mk, k = 0, 1, . . . (32)

φk = λφk−1 + M T
k ŝk, k = 0, 1, . . . (33)

with 0 < λ < 1 being the exponential forgetting factor. The
recursive algorithm is initialized to Φ−1 = 0 and φ−1 = 0. To
ensure that Φk is invertible, (31) is not solved until k ≥ 2. Note
that the matrix Φ−1

k is calculated only once as it is deterministic
and independent of location estimates. Therefore, the calculation
of Φ−1

k has no computational complexity. The smoothed location
estimates are given by

ˆ̂sk = M kξ̂k. (34)

Setting λ < 1 allows old source location estimates to be for-
gotten, which in turn permits tracking of maneuvering sources. By
making λ small, the tracking performance is improved at the ex-
pense of increased variance.

5. SIMULATION EXAMPLES

In the simulation examples, we use the source tracking geometry
shown in Fig. 2. The receivers are at r1 = [0, 0]T , r2 = [−5, 8]T ,
r3 = [4, 6]T , r4 = [−2, 4]T and r5 = [7, 3]T . The RDOA noise
variance is set to σ2

n = 0.002.
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Fig. 2. Simulated tracking geometry with location estimates ŝk.
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Fig. 3. Contour plot of the CWLS cost function.

In the first simulation example, the source is stationary at s =
[6, 22]T . The contour plot of the CWLS cost function that is min-
imized in (27) is shown in Fig. 3. Note how flat the cost func-
tion is despite being convex in this case. The bias and MSE of
the maximum likelihood GN and CWLS estimates were compared
using 10,000 simulation runs. The CWLS algorithm was imple-
mented using the Nelder-Mead simplex method, and initialized to
the origin. For the GN algorithm, 10 iterations were used, and
the algorithm was initialized to the true solution to avoid diver-
gence. The mean CWLS and GN estimates were found to be
[5.9960, 21.9866]T and [6.0039, 22.0123]T , respectively, and the
MSE values were 0.2645 and 0.2660. In this case, the CWLS and
GN algorithms have an identical performance.

The tracking performance of the recursive algorithm in (34)
was simulated. The results for one realization of CWLS location
estimates ŝk are shown in Fig. 4. The CWLS location estimates
used in the tracking simulation are shown in Fig. 3 along with the
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Fig. 4. Source trajectory estimates ˆ̂sk.

true source trajectory. The TDOA measurements are taken at tk =
k, k = 0, 1, . . . , L − 1 with L = 120. The source moves in two
constant-velocity legs. In the first leg, the initial source location
and velocity are s0 = [−6, 22]T and v0 = [0.15, 0.20]T , respec-
tively. The second leg starts at k = 50 with the velocity changing
to [0.1,−0.15]T . The forgetting factor is set to λ = 0.92. Com-
parison of Figs. 3 and 4 reveals the improved tracking performance
of the recursive estimates ˆ̂sk with respect to the stationary CWLS
location estimates ŝk .
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