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ABSTRACT

A statistical analysis of differential Doppler estimation is pre-
sented for acoustic sources with a harmonic spectrum. Our model
for the sensor measurements includes a physics-based statistical
model for the scattering of the wavefronts by the atmosphere. We
derive the Cramér-Rao bound (CRB) on differential Doppler esti-
mation as a function of the atmospheric conditions, the frequency
of the source, and the range of the source. We apply the CRB result
for several cases of interest with simulated and measured data.

1. INTRODUCTION

The data collected by a network of aeroacoustic sensors may be
processed to localize the positions of ground vehicles, track the
vehicles as they move, and identify the type of vehicle. However,
this processing is challenging because sound signals that propagate
through the air are scattered by turbulence, which causes random
fluctuations in the measured data [1]–[3]. In past work [4], we
have studied passive time-delay estimation with widely-separated
aeroacoustic sensors. We found that accurate time-delay estimates
are difficult to obtain for many ground vehicles because their en-
gines emit a harmonic spectrum with small time-bandwidth prod-
uct, and also because the scattering causes a loss in signal coher-
ence.

In this paper, we study Doppler estimation for moving acous-
tic sources. Doppler estimation is important because it provides
information about the path of a moving source, and it may be
combined with bearing estimates for improved localization accu-
racy. The narrowband, harmonic spectrum of the source is ad-
vantageous for Doppler estimation, and the differential Doppler
between two sensors can be estimated noncoherently. We provide
a statistical performance analysis of differential Doppler estima-
tion using the scattering propagation model summarized in [3].
We provide Cramér-Rao bounds (CRBs) on the accuracy of dif-
ferential Doppler estimation as a function of signal-to-noise ratio
(SNR), meteorological conditions, frequency of the source, and
the range of the source. We compare the performance of frequency
estimation algorithms with the CRB, and we present results from
processing measured aeroacoustic data.

2. DATA MODEL

In this section, we present a model for the signals received by a
network of aeroacoustic sensors. We focus on acoustic sources
with harmonic spectra, which are generated by rotating machinery
in engines, tire and/or exhaust noise, vibrating surfaces, and other

effects. Internal combustion engines typically exhibit a strong har-
monic acoustic signature tied to the cylinder firing rate.

We begin by considering a moving source that emits a single
tone, and we present a model for the scattering caused by atmo-
spheric turbulence. The model is extended to moving sources that
emit a sum of harmonics by assuming that the scattering in each
harmonic is independent. The model is formulated for a single
sensor, but it may be extended to multiple sensors by modeling the
scattering and noise as independent at distinct sensors. The scat-
tering is independent if the distance between the sensors is larger
than a few 10’s of m [3]. The scattering model was developed by
Wilson, Collier, and others [1]–[2]. The book chapter [3] presents
the scattering model for a nonmoving source, so the reader may
refer to [3] for more details and additional references.

Four phenomena are primarily responsible for modifying a si-
nusoidal signal emitted by a nonmoving source to produce the sig-
nal observed at the sensor:

1. Transmission loss caused by spreading of the wavefronts,
refraction by wind and temperature gradients, ground inter-
actions, and molecular absorption.

2. The propagation delay from the source to the sensors.

3. Additive noise at the sensors caused by thermal noise, wind
noise, and directional interference.

4. Random fluctuations in the amplitude and phase of the sig-
nals caused by scattering from random inhomogeneities in
the atmosphere such as turbulence.

The propagation delay is developed using a path for the source
that is a straight line with constant velocity over an observation
interval of length T sec, t ∈ [to, to + T ]. If the radial velocity
of the source is denoted by vr(to), then the propagation time is
well-approximated by [5]

τ (t) ≈ τ (to) +
1

c
vr(to)(t − to), (1)

where c is the speed of sound.
The scattering of the signal by turbulence is particularly sig-

nificant. The turbulence consists of random atmospheric motions
occurring on time scales from seconds to several minutes. Scatter-
ing from these motions causes random fluctuations in the complex
signals at the sensor. The random fluctuations caused by scattering
are modeled as a complex, circular, Gaussian random process with
zero mean. The Gaussian model for the scattering is somewhat
idealized, but it has been shown experimentally to be accurate in
many cases of interest [6, 7, 8].
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Fig. 1. PSD Gz̃(f) for the sensor signal model in (2) for process-
ing bandwidth B Hz.

The scattering spreads a portion of the energy from the pure
tone emitted by the source into a zero-mean random process, which
we denote by �v(t). The saturation parameter [2], denoted by
Ω ∈ [0, 1], defines the fraction of average signal power that is
scattered from the mean into the random component. The model
for the complex envelope of the sensor signal is

�z(t) = �s [t − τ (t)] + �w(t)

=
�

(1 − Ω)S exp [jθ] exp [−j2πfd(t − to)]

+
√

ΩS �v(t) exp [jθ] exp [−j2πfd(t − to)]

+ �w(t), (2)

where the complex envelope is computed with respect to the source
frequency, fo. The noise, �w(t), is AWGN (complex, circular,
Gaussian random process with zero mean) with power spectral
density (PSD) Gw̃(f) = 2No. The average signal energy,
E{|�s(t)|2} = S, is determined by the source strength and trans-
mission loss. The phase θ in (2) is determined by the source phase
and the propagation time τ (to) in (1). The frequency, −fd, is the
shift due to Doppler, and it depends on the radial velocity of the
source and the frequency of the source,

fd =
vr(to)

c
fo = Doppler frequency shift. (3)

The scattering may be weak (Ω ≈ 0) or strong (Ω ≈ 1), which are
analogous to Rician and Rayleigh fading in the radio propagation
literature. The scattered process �v(t) has PSD Gṽ(f), which we
model as a symmetric function centered at 0 Hz with bandwidth
Bv Hz. This implies that the autocorrelation function, rṽ(ξ), is
real-valued with coherence time on the order of 1/Bv sec. The
scattered process is normalized to unit average power, rṽ(0) = 1.

The PSD Gz̃(f) corresponding to the model in (2) is illus-
trated in Figure 1, and the corresponding formula is

Gz̃(f) = (1 − Ω)S δ(f + fd) + (ΩS) Gṽ(f + fd) + Gw̃(f).

The observations are band-pass filtered with bandwidth B Hz, so
the AWGN PSD is Gw̃(f) = 2No rect(f/B), where B must be
larger than the maximum Doppler frequency shift for the source
of interest. Our objective in this paper is to study algorithms and
performance bounds for estimating fd in Figure 1 as a function of
the saturation Ω, the processing bandwidth B Hz, the observation
time T , the average SNR = S/(2NoB), and the scattered band-
width Bv .

The sensor signals in (2) with PSD in Figure 1 may be sam-
pled at the rate Fs = B samples per second, so the spacing be-
tween samples is Ts = 1/B. In the observation time of T sec,

N = �BT � samples are obtained, which are collected in the vec-
tor �z =

� �z(0) . . . �z((N − 1)Ts)
�T

. This vector has a
complex Gaussian distribution with mean and covariance matrix

�z ∼ CN
�
ejθ

�
(1 − Ω)S a,

(ΩS)Rṽ ◦
�
aaH

�
+ (2NoB)I

�
, (4)

where

aT = [1, exp (−j2πfd/B) , . . . , exp (−j2π(N − 1)fd/B)] ,

Rṽ is the covariance matrix of the samples of the scattered process
with elements [Rṽ ]mn = rṽ [(m − n)/B], ◦ denotes element-
wise product, (·)H denotes Hermitian transpose, and I is the iden-
tity matrix.

The scattering causes fluctuations in the signal energy at the
sensor. A plot of the probability density function (pdf) of
10 log10 |�z(t)|2 is presented in [3], showing that small deviations
in the saturation from Ω = 0 cause energy fluctuations of sev-
eral dB. For Ω > 0.5, energy deviations of 10 to 15 dB are not
uncommon.

The value of the saturation Ω at a sensor depends on the source
distance (d), the source frequency (fo), and the meteorological
conditions. The saturation Ω depends on the source range, d, ac-
cording to [3]

Ω = 1 − exp (−2µ d) , (5)

where µ is called the extinction coefficient for the first moment.
An approximate expression for µ as a function of frequency and
meteorological condition is [3]

µ ≈
�

4.03 × 10−7 f2
o , mostly sunny

1.42 × 10−7 f2
o , mostly cloudy

, (6)

for fo ∈ [30, 200] Hz . A contour plot of (5) and (6) for mostly
sunny conditions is contained in [3]. The plot shows that Ω values
over the entire range from 0 to 1 may be encountered in aeroacous-
tics for frequencies in the range from 30 to 200 Hz and ranges from
5 to 200 m. The saturation varies significantly with frequency for
ranges > 100 m.

3. CRAMÉR-RAO BOUNDS

The CRB provides a lower bound on the variance of any unbiased
estimate f̂d, so E{|f̂d − fd|2} ≥ CRB(f̂d). The general form
of the CRB for a complex Gaussian model such as (4) is well-
known, e.g., [9]. Schultheiss and Weinstein [10] derived closed-
form expressions for the CRBs in the particular cases when Ω = 0
(no scattering) and Ω = 1 (full scattering):

Ω = 0 : CRB(f̂d) =
3

2π2T 3

No

S
(7)

Ω = 1 : CRB(f̂d) ≈ Bv/T�∞
0

�
d

dx
log G1(x)

	2
dx

. (8)

For Ω = 1, the approximation is accurate for high SNR
= S/(2NoB) and large BvT = time-bandwidth product of the
scattered process. The function G1(x) in (8) is a normalized form
of the scattered PSD with unit bandwidth, so that
Gṽ(f) = (1/Bv) G1(f/Bv).
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Next we evaluate the CRBs on frequency estimation for Ω in
the interval [0, 1]. We use the following form for the scattered
PSD,

Gṽ(f) =
β

Bv
tri

�
f

Bv

�
+

1 − β

B
rect

�
f

B

�
, (9)

where tri(x) = 1−|x| for |x| ≤ 1 and 0 otherwise, rect(x) = 1 for
|x| ≤ 0.5 and 0 otherwise, and β = 0.95 determines the fraction
of energy in the “peaked” triangular function that has bandwidth
Bv . The broader, rectangular component is added to (9) in order to
prevent the PSD from reaching the value of 0, which leads to opti-
mistic CRBs. The autocorrelation function of the scattered process
is rṽ(ξ) = β sinc2(Bvξ) + (1 − β) sinc(Bξ).

The CRBs for several cases are shown in Figures 2(a) and 2(b).
The exact CRB based on the model (4) is indicated by the solid line
for Ω ∈ [0, 1], while the Schultheiss & Weinstein (S-W) CRBs for
Ω = 0 and Ω = 1 in (7) and (8) are indicated by ∗. Figure 2(a)
shows the CRB variation with saturation Ω and scattered signal
bandwidth Bv . (The values of all parameters are specified in the
caption to Figure 2.) The CRB with no scattering (Ω = 0) is inde-
pendent of Bv and agrees with the S-W formula in (7). With full
scattering (Ω = 1), the CRB agrees with the S-W approximation
in (8) when BvT > 1. Note that the CRB increases rapidly for
small values of Ω > 0, and then the variation is fairly flat with
Ω. Figure 2(b) shows the CRB variation with saturation Ω and
observation time T . Again we see the agreement with the S-W
formula in (7) for all values of T and (8) for BvT > 1, and the
rapid increase in the CRB for small values of Ω > 0. For param-
eter values that are commonly encountered in aeroacoustics, e.g.,
Bv = 0.1 Hz, T = 1 sec, and SNR = 30 dB, Figure 2 indicates
that scattering increases the

√
CRB by a factor of 10.

We have also investigated the CRB variation with average SNR.
The CRB is inversely proportional to SNR with no scattering (Ω =
0), as in (7), and is fairly insensitive to SNR for Ω > 0 (note (8) is
independent of SNR for Ω = 1).

Estimators for fd based on the model (4) are considered next.
We do not consider the general case in which the saturation Ω ∈
[0, 1] is unknown. Instead, we consider the maximum-likelihood
(ML) estimator for the case of no scattering (Ω = 0) and an esti-
mator that was proposed by Besson and Stoica [11] for the case of
full scattering (Ω = 1). The periodogram (P-GRAM) is the ML
estimator with no scattering, and is given by�fd = argmax

fd

����N−1
n=0 �z(nTs) exp(j2πfd nTs)

���2. For the case

of full scattering (Ω = 1), the signal component in (4) is a ran-
dom process with unknown covariance matrix Rṽ . For the case
in which Rṽ is real-valued, Toeplitz, and unknown, Besson and
Stoica [11] proposed the following estimator:�fd = argmax

fd

Re
��N−1

m=1 �rz̃[m]2 exp(j4πfd mTs)
�

, where

�rz̃[m] is a consistent estimate of the mth lag of the sensor signal
autocorrelation. We label this estimator C2-GRAM because it is
similar to the correlogram.

Figure 2(c) contains simulated mean-squared error (MSE) re-
sults for both estimators for the range of saturation values Ω ∈
[0, 1] and the parameter values listed in the caption. The P-GRAM
and C2-GRAM estimators perform similarly for the conditions in
these simulations. The MSEs of both estimators are close to the
CRB for Ω < 0.1, then the MSE diverges from the CRB for larger
values of Ω. We note that the CRB for Ω > 0 is optimistic since it
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Fig. 2. CRBs for estimation of fd with fd = −0.2 Hz, SNR
= 28.5 dB, B = 7 Hz, and (a) T = 1 sec, and various Bv;
(b) Bv = 1 Hz, and various T . (c) Comparison of frequency
estimation mean-squared error (MSE) with the CRB for B = 5
Hz, T = 2 sec, average SNR = 30 dB, Bv = 1 Hz, and fd = 0.31
Hz.
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Freq. Range (m)
(Hz) 5 10 20 40 80 160 320

45 .004 .008 .016 .032 .063 .122 .230
90 .016 .032 .063 .122 .230 .409 .648

135 .036 .071 .137 .255 .444 .691 .905
180 .063 .122 .230 .407 .648 .876 .985

(a)

Freq. Range (m)
(Hz) 5 10 20 40 80 160 320

45 .004 .006 .008 .013 .019 .031 .053
90 .007 .010 .015 .023 .034 .054 .096

135 .011 .015 .022 .032 .049 .078 .145
180 .014 .020 .028 .041 .061 .097 .171

(b)
Table 1. (a) Saturation Ω for harmonic frequencies at various
ranges under mostly sunny conditions using (5),(6). (b)

√
CRB

on Doppler for harmonics at various ranges.

is derived for the case in which Ω, SNR, and Rṽ are known. Ad-
ditional simulations indicate that for Ω > 0.5, the MSEs are fairly
insensitive to the SNR and Bv values.

4. EXAMPLES

We consider Doppler estimation for a harmonic source at various
ranges using the model for saturation in (5) and (6). Let the fun-
damental frequency of the source be 15 Hz, and suppose that har-
monics 3, 6, 9, and 12 (at 45, 90, 135, and 180 Hz) are used for
Doppler estimation. Then the saturation Ω varies with frequency
and range as in Table 1(a).

We consider a processing bandwidth B = 10 Hz, observation
time T = 2 sec, and scattering bandwidth Bv = 0.5 Hz. The
SNR is varied in proportion to 1/range2, resulting in SNR varia-
tions from 33 dB at range 5 m to −3 dB at range 320 m. Table 1(b)
contains the

√
CRB on Doppler frequency estimation for each fre-

quency and range. The
√

CRB on Doppler estimation is smaller at
the 45 Hz harmonic than the 180 Hz harmonic by about a factor
of 3 at each range. The

√
CRB gets larger by about an order of

magnitude between source ranges 10 m and 320 m.
Figure 3 shows the estimated differential Doppler shift be-

tween two sensors based on measured aeroacoustic data. A tracked
vehicle traveled between the sensors at a range of about 100 m
from each sensor, and a frequency component near 38 Hz was
estimated during a 10 sec time interval. Note from the MEAN
ESTIMATE line that smoothing the Doppler estimates over time
provides an error from GPS ground truth that is comparable to√

CRB ≈ 0.1 Hz, where the CRB is computed for conditions that
approximate those in the experiment.
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