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ABSTRACT
The interaural time difference (ITD) of arrival is a primary
cue for acoustic sound source localization. Traditional es-
timation techniques for ITD based upon cross-correlation
are related to maximum-likelihood estimation of a simple
generative model. We generalize the time difference es-
timation into a deconvolution problem with nonnegativity
constraints. The resulting nonnegative least squares opti-
mization can be efficiently solved using a novel iterative al-
gorithm with guaranteed global convergence properties. We
illustrate the utility of this algorithm using simulations and
experimental results from a robot platform.

1. INTRODUCTION

Estimating the interaural time difference (ITD) of a sound
source is critical for determining the location of a sound
source. Time-delay estimation has been used for video con-
ferences to track the active speaker, and in surveillance ap-
plications to locate people and vehicles [1]. With the emer-
gence of low-cost, embedded sensor networks, algorithms
for efficiently estimating the time delays among acoustic
sensors in noisy, reverberant environments have attracted
renewed interest [2].

The earliest time delay estimation algorithms used
matched filters following the development of radar and
sonar arrays. Most current algorithms rely upon first calcu-
lating the cross-correlation between the received signals at
the different sensors [3]. With a few sensors, various meth-
ods have been proposed to optimize the temporal cross-
correlation function to be more robust to noise in the sen-
sors. With a large array of sensors, spectral-based algo-
rithms such as MUSIC have proven successful in discrimi-
nating the signal subspace from the noise using an eigende-
composition of the correlation matrix [4].

This submission presents an alternative approach to ITD
estimation based upon nonnegative deconvolution. We be-
gin in Section 2 with a brief review of cross-correlation
based methods as a form of maximum likelihood estima-
tion within the context of a simple generative model. In

Section 3, we generalize the maximum likelihood optimiza-
tion to include the effects of echoes. For effective time dif-
ference estimation, we introduce the use of nonnegativity
constraints in the optimization and describe a novel itera-
tive algorithm with guaranteed convergence properties. In
Section 4, we illustrate the advantages of this representation
in simulations, and in Section 5 present its performance on
data taken from an experimental robot head.

2. GENERATIVE MODEL
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Fig. 1. Generative model for estimation of the ITD between
two microphones.

In this submission, we focus on estimation of the time
difference of arrival of a single acoustic source with a pair
of microphones, although generalization to a larger acous-
tic sensing array with more sources is certainly possible. In
this framework, sound originates from a source with wave-
form s(t) and impinges on a pair of microphones as shown
in Figure 1. The resulting signals measured on the two mi-
crophones are described in the time domain as:

xi(t) = s(t) ∗ hi(t) + ηi(t), i = 1, 2 (1)

where hi(t) are the impulse responses between the source
and microphones, and ηi(t) are corrupting noise terms
which are assumed to be spatially and temporally uncorre-
lated with the source.

In an ideal, free-space scenario, the impulse responses
between a far-field source and the microphones are related
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to the propagation delays ∆i between the source and the
microphones: hi(t) = δ(t − ∆i). The azimuthal direc-
tion angle φ of the sound source can then be estimated from
the time difference of arrival between the two microphones,
τ = ∆2 − ∆1, as shown in Fig. 1.

2.1. Cross-correlation based methods

By modelling only the direct-path propagation and assum-
ing the noise terms in Eq. (1) are Gaussian distributed and
white with equal variance, the maximum likelihood estima-
tion of the propagation delays is given by the minimization:

min
∆i,s(t)

∑
i

∫
dt |xi(t − ∆i) − s(t)|2. (2)

Solving for the source terms in Eq. (2) and transforming
the optimization into the frequency domain, the estimated
time difference of arrival between the two microphones τ is
given by the optimization:

τ̂ = arg min
τ

1
2
|x2(t) − x1(t − τ)|2 (3)

= arg max
τ

∑
f

X1(f)∗X2(f)ej2πfτ (4)

where Xi(f) is the Fourier transform of xi(t). Thus, the op-
timal maximum likelihood estimate is given by determining
when the cross-correlation function:

C(τ) =
∑

f

X1(f)∗X2(f)ej2πfτ (5)

obtains its maximal value. Note that by writing the para-
metric optimization in the frequency domain, the estimated
time difference can be accurately resolved even though the
Fourier estimates Xi(f) are obtained from transforming
discretely sampled time sequences. This is in contrast to
the usual calculation of the cross-correlation in the time-
domain C[m] =

∑
n x1[n]x2[n + m] which only gives the

cross-correlation values on discretely sampled time differ-
ences.

The cross-correlation in Eq. (5) can be modified by first
weighting the signals Xi(f) before calculating their tem-
poral correlation. In one possible modification called the
phase alignment transform (PHAT), the amplitude infor-
mation in Xi(f) is discarded by cross-correlating only the
phases, X ′

i(f) = Xi(f)/|Xi(f)| [5]. In this transform, the
amplitude normalization results in pseudo-wide-band sig-
nals which are then temporally correlated to estimate the
time difference of arrival between the two signals. It has
been shown that this normalization can help compensate for
differences in the frequency responses obtained at the two
microphones.

2.2. Deconvolution

In the previous section, we saw that the optimization of
Eq. (3) over a single time difference variable was equiva-
lent to maximizing the cross-correlation. Here, in order to
explicitly model the multi-path reflections, we instead con-
sider the following least squares optimization problem [6]:

min
αi

1
2
|x2(t) −

∑
i

αix1(t − τi)|2 (6)

where {τi} are a discrete set of possible time delays. The
motivation for this optimization derives from adaptive filter
techniques for echo cancellation [7]. In echo cancellation,
a set of filter coefficients are found which best predict the
resulting echoes from a given input signal. Since we expect
the signal x2(t) to approximately be a time-shifted and pos-
sibly scaled version of x1(t), the minimization of Eq. (6)
should yield a set of coefficients αi which can be used to
estimate the dominant time delay [8].

Eq. (6) may be regarded as a deconvolution since it
decomposes the signal x2(t) as the convolution x1(t) ∗∑

i αiδ(t − τi). This optimization can be rewritten as a
quadratic function over the coefficients �α = {αi}:

min
αi

1
2

∑
ij

αiKijαj +
∑

i

biαi (7)

where the linear coefficients are given by bi = −C(τi), with
C(τ) being the cross-correlation function given in Eq. 5.
The quadratic coupling terms derived from Eq. (6) are func-
tions of |X1(f)|2; however, we can symmeterize the opti-
mization by taking

Kij =
1
2

∑
f

[|X1(f)|2 + |X2(f)|2] cos(2πf(τj − τi)).

(8)
This is equivalent to performing the minimization for the
symmetric deconvolution:

min
αi

1
2
|x2(t)−

∑
i

αix1(t−τi)|2+1
2
|x1(t)−

∑
i

αix2(t+τi)|2.
(9)

With no constraints on the coefficients �α, the minimum of
Eq. (7) can be solved exactly and yields: �α = −K−1�b.

3. NONNEGATIVE DECONVOLUTION

Unfortunately, the matrix K in Eq. 7 can be badly condi-
tioned and the resulting linear solution for �α is very sus-
ceptible to noise. To alleviate this problem in the decon-
volution, we introduce the use of nonnegativity constraints,
αi ≥ 0, in the optimization. The use of nonnegativity is
physically motivated since echoes should only attenuate and
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delay the signal. Nonnegativity constraints for deconvo-
lution have also been used before in image deconvolution
problems [9], as well as in learning features [10].

The optimization of Eq. 7 with nonnegativity constraints
αi ≥ 0 is convex, and thus there is a guaranteed global
minimum. However, there is no known analytical solution
and so we use the following iterative solution [11]. First,
the matrix K is written in terms of its positive and negative
components: K = K+ −K− where K+

ij ≥ 0 and K−
ij ≥ 0

so that both K+ and K− are nonnegative matrices.
In terms of these nonnegative matrices, the estimate of

�α is iteratively updated using the following rule:

αi ←− αi

[
−bi +

√
b2
i + 4(K+�α)i(K−�α)i

2(K+�α)i

]
. (10)

These iterative updates are simple to implement, can be
computed in real-time, and do not require the adjustment
of any rate parameters that are needed for gradient-based
algorithms. They prescribe a multiplicative update for the
nonnegative coefficients αi using a nonnegative factor in the
right hand side of Eq. (10). A rigorous proof of global con-
vergence for these updates can be proved using an auxiliary
function [11]. The form of the updates can also be moti-
vated by showing that these updates have fixed points at the
global minima of the objective function. This can be seen
by considering the gradient of Eq. (7): K+�α − K−�α +�b.
The three terms in the gradient can be used to define multi-
plicative factors ri in terms of a quadratic equation:

(K+�α)ir
2
i + biri − (K−�α)i = 0. (11)

The general solution for ri is given as the multiplicative
factors in the update Eq. (10). In the case when the gra-
dient vanishes, the solution is ri = 1 in Eq. (11). Thus, it is
clear that the multiplicative update rule exhibits a fixed point
when the quadratic function achieves its minimum value.
The delay τi associated with the maximal coefficient of αi

at this optimum is then given as an estimate for the ITD.
If the possible delays are not known in practice, they may
be estimated by first optimizing Eq. (6) over a uniformly
sampled set of delays. This set may then be refined by itera-
tively adding more values of τi in the vicinity of the largest
coefficients αi, and recomputing the optimization. This pro-
cedure can be repeated until the time delay estimate is of the
desired resolution.

It should be noted that when the K matrix is equal to
a scaled identity matrix, the estimate of the ITD is equiva-
lent to the estimate from maximizing the cross-correlation.
This would be the case if the source signal is temporally
uncorrelated and if there is no reverberation in the environ-
ment. The difference between nonnegative deconvolution
and cross-correlation estimates arises when there are tem-
poral correlations present in the signals xi(t). The nonnega-
tive deconvolution explicitly models possible time delays in

these correlations, and iteratively estimates nonnegative co-
efficents αi that describe how these correlations could have
arisen from possible echoes.

4. SIMULATION

To illustrate the differences between the cross-correlation
based algorithms and nonnegative deconvolution, the vari-
ous algorithms are used to perform ITD estimation on the
following simulated source signal:

s(t) = e−
1
2 (t/T )2 sin 2πf0t (12)

In this simulation, we chose the carrier frequency to be
f0 = 1000 Hz, and T was chosen to give a bandwidth
around 700 Hz. The source signal was delayed by a relative
time shift τ = 125 µs and discretely sampled at 10 kHz to
generate two signals. To investigate the effect of noise and
reverberation in these algorithms, white noise and a simu-
lated secondary echo was also added to the signals x1(t)
and x2(t). The level of the Gaussian white noise was cho-
sen with a signal to noise ratio equal to 50 dB, while the
simulated echo was designed with a delay time of 725 µs
and a relative amplitude of -3 dB.
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Fig. 2. Time-delay estimation on simulated data using: (a)
cross-correlation, (b) phase alignment transform, (c) lin-
ear deconvolution, (d) nonnegative deconvolution. The true
time delay between the signals is located at .125 ms, in-
dicated by the dashed line. A secondary echo occurs at
.725 ms, indicated by the dotted line.

Fig. 2 shows the results of applying various time de-
lay estimation algorithms to this simulated data. The cross-
correlation function is contaminated by the presence of
the secondary echo, and the maximal value of the cross-
correlation is shifted by 50 µs from the true time delay. On
the other hand, the phase alignment transform (PHAT) is
more affected by the white noise present in the frequency
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bands outside the bandwidth, and its peak value shows much
more variability (shifts as large as 125 µs). The linear de-
convolution solution is also very susceptible to noise, due to
the ill-conditioned matrix K in the optimization of Eq. (7).
In fact, it is almost impossible to tell from the linear decon-
volution coefficients anything about the time delays present
in the signals.

In constrast, the deconvolution with nonnegativity con-
straints exhibits quite different behavior than the linear de-
convolution. Not only is it able to accurately predict the
ITD, it also is able to predict the scale and time shift of the
secondary echo as well. In this case, the nonnegativity con-
straints prevent the deconvolution from amplifying the noise
present in the signals, yet still are able to robustly model the
contamination from echoes due to reverberation.

5. EXPERIMENTAL RESULTS
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Fig. 3. Experimental robot platform for ITD estimation in a rever-
berant room. S: source source; M1 and M2: microphones.

To test the performance of the algorithms in a real
acoustic environment, we performed ITD estimation using
a robot platform as shown in Fig. 3. A small mobile robot
was used to record the sound signals from a pair of omni-
directional microphones, with a microphone separation of
7 cm. A speaker playing recorded speech was used as a
sound source and placed approximately 150 cm away from
the robot. The acoustic signals were digitized at a sample
rate of 16 kHz, and digitally recorded over a wireless net-
work onto a central server where the data was analyzed. The
experiment was conducted in a noisy lab environment, and
the robot was placed approximately 40 cm from a concrete
wall.

The robot head was oriented at several different az-
imuthal angles, and measurements were taken with window
sizes of 512 samples from the two microphones. At each
azimuthal angle, 30 measurements were taken, and the dif-
ferent algorithms were used to estimate the ITD. The true
ITD was calculated using a longer wide-band white noise
sound signal in which all the algorithms agreed on the time
delay estimate.

The results of the ITD estimates are shown in Table 1.
The nonnegative deconvolution algorithm shows a smaller

Azimuthal angle 350 600 850

True ITD (µs) 150 241 307
avg std avg std avg std

Deconvolution 163 18 262 18 316 14
Cross-correlation 174 15 272 17 321 18
PHAT 158 11 235 68 298 48

Table 1. Experimental ITD estimation by the different algorithms,
showing the average and standard deviation of the time difference
estimates.

bias in the ITD estimates than from cross-correlation, and
smaller variability than the phase alignment transform.
Thus, in this particular noisy environment with reverbera-
tion, there is some preliminary evidence that nonnegative
deconvolution may be advantageous in estimating ITD for
source localization.

To summarize, we have presented nonnegative deconvo-
lution as an alternative for ITD estimation. A computation-
ally efficient algorithm with global convergence properties
exists for computing the deconvolution, and results in es-
timates that may be more robust in noisy, reverberant envi-
ronments. Current work involves extending the algorithm to
also estimate the true underlying source signal, along with
the nonnegative filter coefficients of the multipath reflec-
tions. Finally, we acknowledge the ARO and NSF for fi-
nancial support, and Fei Sha for useful discussions.

6. REFERENCES

[1] J.D. de Jesus, J.J.V. Calvo, and A.I. Fuente, IEEE Aerospace
and Electronic Systems Magazine, vol. 15, no. 2, pp. 9–16,
2000.

[2] Joe Chen, Kung Yao, and Ralph E. Hudson, IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 30–39, 2002.

[3] H. Krim and M. Viberg, IEEE Signal Processing Magazine,
vol. 13, no. 4, pp. 67–94, 1996.

[4] P. Stoica and R. L. Moses, Introduction to Spectral Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

[5] C. H. Knapp and G. C. Carter., IEEE Transactions on ASSP,
vol. 24, no. 4, pp. 320–327, 1976.

[6] J.J. Fuchs, IEEE Transactions on Signal Processing, vol. 47,
pp. 237–243, 1999.

[7] Jacob Benesty, Tomas Gansler, Dennis R. Morgan, M. Mo-
han Sondhi, and Steven L. Gay, Springer-Verlag, 2001.

[8] Y. T. Chan, J. M. Riley, and J. B. Plant, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 28, pp. 8–16,
1980.

[9] L.B. Lucy, Astronomical Journal, vol. 79, pp. 745–754,
1974.

[10] Daniel D. Lee and H. Sebastian Seung, Nature, vol. 401, pp.
788–791, 1999.

[11] Fei Sha, Lawrence K. Saul, and Daniel D. Lee, in Advances
in Neural Information Processing Systems, Sebastian Thrun
Suzanna Becker and Klaus Obermayer, Eds. 2002, vol. 15,
The MIT Press.

II - 380

➡ ➠


