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ABSTRACT

We address the problem of finding sparse solutions to linear in-
verse problems when there are Multiple Measurement Vectors (MMV)
and the solutions are assumed to have a common, but unknown,
sparsity profile. This is an important extension to the single mea-
surement sparse solution problem that has been extensively studied
in the past. Of particular interest are methods based on minimiz-
ing diversity measures. A measure appropriate for the multiple
measurement problem is developed, and an algorithm is derived
based on its minimization. The algorithm developed, M-FOCUSS,
generalizes the FOcal Underdetermined System Solver (FOCUSS)
algorithm developed for the single measurement case. The con-
vergence of the algorithm is established and a simulation study is
conducted to evaluate its effectiveness. The results clearly show
the ability of M-FOCUSS to utilize multiple measurement vectors
to accurately identify the sparsity structure and compute sparse so-
lutions.

1. INTRODUCTION

The problem of computing sparse solutions (i.e., solutions where
only a very small number of entries are nonzero) to linear inverse
problems arises in a large number of application areas [1]. The
problem can be stated as: Represent a signal of interest using the
minimum number of vectors from an overcomplete dictionary (set
of vectors), and has been shown to be NP-hard. Consequently
a number of sub-optimal low complexity algorithms have been
developed. Popular approaches include greedy sequential search
techniques such as Matching Pursuit [2] and methods based on
minimizing diversity measures such as Basis Pursuit [3] and FO-
CUSS (FOCal Underdetermined System Solver) [4, 5, 6]. The
later class of diversity minimization methods are of interest in this
work. A discussion on extension of sequential search methods can
be found in [7, 8]

In this paper, we consider an important variation of the sparse
linear inverse problem: the computation of sparse solutions when
there are Multiple Measurement Vectors (MMV) and the solutions
are assumed to have a common, but unknown, sparsity profile.
Our initial interest in solving the MMV problem was motivated
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by the need to solve the neuromagnetic inverse problem that arises
in Magnetoencephalography (MEG), a modality for imaging the
brain [4, 9]. It is assumed that the MEG signal is the result of ac-
tivity at a small number of possible activation regions in the brain.
When several snapshots (measurement vectors) are obtained over
a small time period, the assumption is made that the variation in
brain activity is such that, while the activation magnitudes change,
the activation sites themselves do not. This naturally leads to the
formulation of the MMV problem studied in this paper. The for-
mulation is also useful in array processing, non-parametric spec-
trum analysis, and equalization of sparse channels. Despite the
considerable application potential, the MMV problem has not re-
ceived proper attention. As our results show, one can greatly im-
prove upon the ability to provide sparse signal representations by
utilizing MMV.

1.1. Problem Formulation

The MMV problem can be stated as solving the following L un-
derdetermined systems of equations:

Ax(l) = b(l) + n(l), l = 1, · · · , L , (1)

where A ∈ Cm×n, m < n, and often m � n. It is assumed that A
has full row rank (rank(A) = m). L is the number of measurement
vectors and it is usually assumed that L � m. The quantities
b(l) ∈ Cm, l = 1, · · · , L are the measurement vectors and x(l) ∈
Cn, l = 1, · · · , L are the corresponding source vectors. n(l) ∈ Cm

represent the additive noise. Since the matrix A is common to each
of the L representation problems, we can succinctly rewrite (1) as

AX = B + N, (2)

where X = [x(1), · · · ,x(L)], B = [b(1), · · · ,b(L)], and
N = [n(1), · · · ,n(L)]. In the MMV problem, we make the fol-
lowing distinct and important assumptions about the desired so-
lution: 1) The solution vectors x(l), l = 1, · · · , L are sparse,
i.e., most of the entries are zero. 2) The solution vectors x(l),
l = 1, · · · , L are assumed to have the same, but unknown, sparsity
profile, so that the indices of the nonzero entries are independent
of l. However, the values in each nonzero position can be very dif-
ferent. The number of non-zero rows is referred to as the sparsity
of the solution.
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Even in the noisefree case (N = 0), the problem is challeng-
ing. Because of the assumption that A has full row rank, the sys-
tem (2) is consistent and always has a solution. The issue is how to
find a sparse solution from among the infinity of solutions which
exist because m < n (and usually m � n). Unfortunately, it
has been shown for L = 1 that finding the solution which has
the minimum number of nonzero entries is NP-hard. The common
sparsity profile requirement of the MMV problem further compli-
cates the problem. The suboptimal algorithms we develop seek a
good compromise between complexity and optimality of solution.
In the presence of noise, an additional complicating factor one has
to consider is the tradeoff between quality of fit, i.e. ‖AX − B‖,
and the sparsity of the solution.

2. DIVERSITY MINIMIZATION METHODS

Our emphasis in this work is on methods based on minimizing di-
versity measures, measures whose minimization lead to sparse so-
lution. Such approaches for L = 1 have been found to be promis-
ing [10, 3, 5, 6]. For simplicity, we start with the noise free case
(N = 0) and then address noise in Section 2.3.

2.1. Diversity Measures for the MMV Problem

The underdetermined system of equations 2 has many solutions
and a popular choice is the minimum 2-norm solution. The min-
imum 2-norm solutions of Equation 2 are non-sparse. Thus we
need to consider alternate functionals referred to as diversity mea-
sures which lead to sparse solutions when minimized. A popular
diversity measure for the single measurement vector (L = 1) is
E(p)(x) [3, 5, 10] where

E(p)(x) =

n�
i=1

|x[i]|p, 0 ≤ p ≤ 1.

Due to the close connection to �p norms, these measures are re-
ferred to as “�(p≤1) diversity measures” or “p-norm-like diversity
measures.” The diversity measure for p = 0 is of special interest
because it is a direct measure of sparsity. It provides a count of the
number of nonzero components in x: E(0)(x) = #{i : x[i] �= 0}.
Finding a global minimum to this measure requires an enumerative
search that is NP-hard. Consequently, alternate diversity measures
that are more amenable to optimization techniques are of interest.
The E(p)(x) measures for 0 < p ≤ 1 are useful candidate mea-
sures in this context.

All the above measures are relevant to the single measurement
case (L = 1) and not much work is available for the MMV prob-
lem. There is a need to extend the measures to the MMV scenario,
and a good starting point is to consider suitably extending diver-
sity measures developed for L = 1 such as the �(p≤1) diversity
measure, Gaussian or Shannon entropy measures among others
[10, 5]. A general and comprehensive study of diversity measures
for the MMV problem is outside the scope of this work. Instead,
we present one measure which our study has shown to hold much
promise. It is an extension of the �(p≤1) diversity measure which
has often been found to produces better results than other diversity
measures for L = 1 [5]. The modified measure is given by

J(p,q)(X) =

n�
i=1

(‖x[i]‖q)
p, 0 ≤ p ≤ 1, q ≥ 1 (3)

where1 x[i] = [x(1)[i], x(2)[i], ..., x(L)[i]] is the ith row of X and

the row norm is given by ‖x[i]‖q =
��L

l=1 |x(l)[i]|q
� 1

q
. For

simplicity we consider the case q = 2 in the rest of this paper and
denote J(p,2)(X) by J(p)(X), i.e.,

J(p)(X) =

n�
i=1

(‖x[i]‖2)
p =

n�
i=1

�
L�

l=1

|x(l)[i]|2
� p

2

. (4)

This choice of cost function may be motivated in two ways. Firstly,
it may be seen that as p approaches zero, it provides a count of the
number of nonzero rows in X . A nonzero row gets penalized as
p is reduced which promotes a common sparsity profile across the
columns of X . Secondly, pragmatic considerations such as com-
putational complexity also favor its utilization. The minimization
of the J(p)(X) measure (4) will be found to lead to a reasonably
low complexity computational algorithm.

2.2. The M-FOCUSS Algorithm

To obtain sparse solutions with common sparsity profile, in the
noise free case, we minimize J(p)(X) subject to the equality con-
straint AX = B. For this purpose, we employ the factored-gradient
approach [5]. The details are omitted due to space limitations. The
algorithm is summarized as follows:

Wk+1 = diag(ck[i]1−
p
2 ), p ∈ [0, 2]

where ck[i] = ‖xk[i]‖ =

�
L�

l=1

(x
(l)
k [i])2

� 1
2

,

Qk+1 = A†
k+1B , where Ak+1 = AWk+1 (5)

Xk+1 = Wk+1Qk+1.

This algorithm represents an extension of the FOCUSS class of
algorithms developed for L = 1 to the MMV case [5]. Therefore,
it is referred to as M-FOCUSS. The algorithm is terminated once
a convergence criterion has been satisfied, e.g.,

‖Xk+1 − Xk‖F

‖Xk‖F
< δ,

where δ is a user-selected parameter2. This algorithm can be proven
to reduce J(p)(X) in each iteration (Section 2.4). Insight into the
algorithm can be obtained by viewing each iteration as computa-
tion of a weighted minimum norm solution wherein the column
weighting matrix Wk+1 is computed from the row norms of the
solution obtained in the previous iteration. Intuitively, columns
corresponding to rows with smaller norm are likely to be deem-
phasized if they are not relevant in fitting the data and vice versa.

2.3. The Regularized M-FOCUSS Algorithm

Now we generalize the algorithm to deal with additive noise by de-
veloping the Regularized M-FOCUSS algorithm, a generalization

1The range of p can be extended to include negative values [5], but is
not deemed useful enough to be pursued here

2In our experiments δ was chosen as 0.01.
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of Regularized FOCUSS [6]. The algorithm is as follows:

Wk+1 = diag(ck[i]1−
p
2 ), p ∈ [0, 2]

where ck[i] =

�
L�

l=1

(x
(l)
k [i])2

� 1
2

,

Qk+1 = AT
k+1(Ak+1A

T
k+1 + λI)−1B (6)

where Ak+1 = AWk+1 with λ ≥ 0

Xk+1 = Wk+1Qk+1.

Note that M-FOCUSS algorithm corresponds to setting λ to zero
in Regularized M-FOCUSS. There are two useful ways to view
the Regularized M-FOCUSS algorithm. One is by viewing the al-
gorithms, Regularized M-FOCUSS and M-FOCUSS, as solving at
each iteration a weighted least squares (WLS) problem with the
Regularized M-FOCUSS algorithm providing a more robust solu-
tion. This can be seen by examining the difference between the two
underlying WLS problems by comparing equation 6 with equa-
tion 5. The problem of equation 6 can be regarded as a Tikhonov
regularization problem:

Qk+1 = arg min
Q

�‖AWk+1Q − B‖2
F + λ‖Q‖2

F

�
,

where ‖.‖F is the Frobenius norm. Alternately,

Xk+1 = arg min
X

Gk+1(X), (7)

where Gk+1(X) = ‖AX − B‖2
F + λ‖W−1

k+1X‖2
F .

If Xk+1 �= Xk, then Gk+1(Xk+1) < Gk+1(Xk). (8)

A second interpretation of Regularized M-FOCUSS is as an itera-
tive algorithm designed to minimize the regularized cost function

C(X) = ‖AX − B‖2
F + γJ (p)(X), (9)

with γ = λ
2

|p| ≥ 0.

This can be shown by adapting a factored gradient approach to
minimize this regularized cost function. We omit the derivation,
and refer the reader to the derivation for L = 1 in [6] of which this
is an extension. An interesting consequence of this interpretation
is that the tradeoff between quality of fit and sparsity made by the
algorithm becomes readily evident. A larger γ emphasizes sparsity
over quality of fit and vice versa.

The challenge in the Regularized M-FOCUSS algorithm is
finding the regularization parameter λ. This parameter has to be
found for every iteration of the algorithm to ensure that the al-
gorithm does a reasonable trade-off between finding a solution as
sparse as possible and with as small error as possible. Fortunately,
the modified l-curve method described in [6] as a method of choos-
ing the regularization parameter also performs well in this context.
The modified l-curve method is based on the l-curve method intro-
duced in [11] as a method for finding the parameter λ, and more
details can be found in [6].

2.4. Convergence of Regularized M-FOCUSS Algorithm

Fortunately, the Regularized M-FOCUSS algorithm given by (6)
can be shown to reduce the regularized cost function given by (9)
indicating that the algorithm will likely converge to a local mini-
mum. This result is summarized in the following theorem.

Theorem 1. For the Regularized M-Focuss algorithm given by (6),
if Xk+1 �= Xk, then the regularized cost function C(X) given by
(9) decreases, i.e. C(Xk+1) < C(Xk).

Proof. The result is shown using the concavity of the �(p≤1) di-
versity measure. Details can be found in [8].

Experimentally, the algorithm has always converged to a sparse
solution. However, unlike the L = 1 case, no rigorous proof of
such a property appears feasible. Additional parameters in the
M-FOCUSS algorithm performance are the parameter p and the
initial condition. These parameters play the same role as in the
L = 1 case. The choice of p is dictated by the speed of conver-
gence and the sparsity of the solution generated. In practice, val-
ues of p between 0.8 and 1.1 have been found to represent a good
compromise between speed of convergence and the sparsity of the
generated solution. Another parameter to be chosen is the initial
condition. Often in engineering applications, good initial solutions
can be postulated using domain specific knowledge and should be
used for initialization. If no good starting points are available, then
the minimum Frobenius norm solution is a good initializer [8].

3. EXPERIMENTS

In order to evaluate the methods, the true sparse solution has to be
known and this is often hard to know with real data. To circumvent
this problem, we generate synthetic data wherein the true sparse
solution is known and stored as a reference for comparison with
the solutions obtained by the algorithms. An advantage of this
approach is simplicity as well as it can facilitate exhaustive testing
enabling one to draw reliable conclusions. We now describe the
data generation process.

A random m × n matrix A is created whose entries are each
Gaussian random variables with mean 0 and variance 1. A known
sparse matrix X0 with L columns and only r rows with nonzero
entries is created. The indices of the r nonzero rows are chosen
randomly from a discrete uniform distribution, and the amplitudes
of the row entries are chosen randomly from a standard Gaussian
distribution. The MMV matrix B is computed by first forming the
product B̂ = AX0 and adding noise where the components of the
noise sequence, n(�), � = 1, · · · , L are i.i.d and Gaussian with
variance σ2 determined from a specified SNR level as

σ2 =
1

m
‖b̂‖210−SNR/10. (10)

3.1. Experimental Details

Two quantities are varied in this experiment: SNR and the num-
ber of measurement vectors L. In a Monte Carlo simulation, 500
trials are run with the dimensions set to m = 20, n = 30 and the
sparsity to r = 7. In each trial, a different realization of the gener-
ating dictionary A, the solution matrix X0, and the noise vectors
are used. The performance of the M-FOCUSS, and Regularized
M-FOCUSS algorithms are evaluated based on these trials. Even
though M-FOCUSS was derived assuming no noise, we test it on
noisy data to get an indication of its robustness and to better un-
derstand the improvements afforded by Regularized M-FOCUSS.

After terminating the algorithms three situations may occur;
exactly, less than or more than r vectors (columns) from the dic-
tionary are selected. This corresponds to the selected non-zero
rows of X . In the first situation we use the r selected vectors. If
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Fig. 1. Plot of Percentage of trials where all r=7 of the generat-
ing vectors were successfully obtained using different number of
measurement vectors (L) and varying SNR for M-FOCUSS and
Regularized M-FOCUSS (p=0.8, m=20, n=30, r=7)
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Fig. 2. Plot of MSE obtain with different SNR (10, 20, and 30
dB) as L is varied for M-FOCUSS and Regularized M-FOCUSS
(p=0.8, m=20, n=30, r=7)

less than r vectors are selected we continue choosing vectors us-
ing an extended version of ORMP (M-ORMP) [8] on the residual
until we have exactly r selected vectors. This is however a situ-
ation that is not likely to occur using the M-FOCUSS algorithm,
but more likely to happen for the Regularized M-FOCUSS algo-
rithm. A more frequent situation for both the M-FOCUSS and the
Regularized M-FOCUSS is that more than r vectors are selected.
In this case, the r rows in X which yielded the largest magnitudes
row norms are chosen. Having selected the columns, the solution
X is computed using a least squares approach.

3.2. Measurement of Algorithm Performance

The algorithms are run over a large number of trials and their per-
formance is measured in the following two ways: Percentage suc-
cess and relative mean squared error. Percentage success refers
to the percentage of trials in which all of the r columns used to

generate B̂, and only these r columns, were correctly identified by
the MMV algorithm. These results are plotted for different values
of SNR and L in Figure 1. This gives us a performance compar-
ison among the algorithms when used in a component detection
problem, i.e., here we are trying to identify the sparsity pattern.
The relative mean squared error (MSE) between the true and the
estimated solution is calculated as

MSE = E

�‖X − X0‖2
F

‖X0‖2
F

�
, (11)

where X is the solution matrix found using the FOCUSS algo-
rithms, and X0 is the true sparse matrix used to generate the vec-
tors of observations. The expectation is replaced by an average
over the number of trials run, and results are plotted in Figure 2.

The simulation results clearly indicate that multiple measure-
ment vectors greatly improve the ability to identify the sparse struc-
ture and also to accurately compute the sparse solution. The reg-
ularized M-FOCUSS is shown to be quite effective in combatting
the effects of noise.

4. SUMMARY

We have addressed the important problem of finding sparse so-
lutions to linear inverse problems when there are Multiple Mea-
surement Vectors (MMV) and the solutions are assumed to have
a common, but unknown, sparsity profile. A diversity measure
appropriate for the multiple measurement problem is developed,
an algorithm (M-FOCUSS) is derived based on its minimization,
and its convergence is established. The simulation results clearly
demonstrate the usefulness of the algorithms developed.
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