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ABSTRACT

This paper discusses a processing technique for LDV data,
based on the use of two Kalman filters, enabling to detect
the presence of particles and to infer their velocity. This
method turns out to be suitable for the design of real-time
integrated velocimeters. A first estimator, based on the use
of a Kalman filter, deals with the amplitude of the Doppler
signal. A second one, using an Extended Kalman Filter,
allows particle velocity estimation which is assumed to be
a constant. Finally, the estimator is studied by means of
Monte Carlo trials obtained from synthesized signals, and
its performance is then compared to the Cramer-Rao bound.

1. INTRODUCTION

Laser Doppler Velocimetry (LDV) is a non-invasive tech-
nique for measuring the particle velocity in a fluid by laser
interferometry. This technique has been widely used for
many years for fluid flow measurements thanks to several
advantages: LDV allows contactless mesurements, uses a
small measuring volume giving an excellent spatial reso-
lution, and has a linear response. However, conventional
LDV has two main drawbacks: at first, its complexity re-
quires a substantial know-how for an efficient use, and then,
such a system is expensive. In order to design more inte-
grated a set-up, providing accurate real-time measurements
of particle velocity with low sampling frequency, the use
of an Extended Kalman Filter (EKF), for a baseband signal
in quadrature, is proposed. Moreover, prior to estimation,
it is necessary to detect whether a particle is currently in
the laser velocimeter or not. This detection is performed by
comparing the amplitude of the Doppler signal, estimated
thanks to a Kalman filter, with a threshold. It should be
noted that, in order to eliminate the need for storing all the
past observed data, a recursive Kalman filter is more ef-
ficient than a classical post-processing scheme [3, 4] like
the Maximum Likelihood Estimator (MLE) [1, 7] or time-
frequency methods [8, 9] for example.

This article is organized as follows: in section 2, the prin-
ciples of Laser Doppler Velocimetry are presented and the
experimental set-up is described. In Section 3, a model for
the Doppler signal is proposed. The detection scheme is
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Fig. 1. Description of the LDV system.

presented in section 4. Section 5 deals with velocity estima-
tion, and finally, in Section 6, numerical examples illustrate
the performance of the method and a statistical analysis of
the estimations, by means of Monte-Carlo simulations, is
given.

2. LDV PRINCIPLES

A typical LDV system is described in figure 1. Two laser
beams, crossed and focused, define a measuring volume
in which an interference pattern, made of bright and dark
fringes, appears. The spacing between two adjacent bright
fringes, i, depends on the wavelength of the laser light, A,
and on the angle between both beams, 6:

A
= —. 1
' 95in(8/2) M
The quantity D = 1/i represents the sensitivity of the set-
up. A seeding particle scatters light while crossing this vo-
lume. This light is then detected by a photo-detector and its
intensity is modulated with a frequency equal to
v 2sin(0/2
sin(6/2) v

- \ . @)

where V' is the component of the velocity v perpendicular
to the fringes, A the laser wavelength and 6 the angle bet-
ween beams. In order to avoid any ambiguity on velocity
sign, the interference fringes are shifted with the help of a
Bragg cell at Fg = 40 MHz. Finally, the signal is down
shifted thanks to an analog Quadrature Demodulation (QD)
technique, as shown in figure 2. Consequently, an estima-
tion of Fp leads to an estimation of the velocity. Then, Fip
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Fig. 2. Schematic diagram of quadrature demodulation
technique.

determination allows velocity estimation. Additional prin-
ciples of LDV can be found in [2].

3. SIGNAL MODEL

For our demonstration, it is assumed that only one particle is
present in the measuring volume with a constant velocity V.
Then the electrical signal delivered by the photo-detector is

s(t) =
s(t) =

In this equation, A(t) and z(t) represent, respectively, the
amplitude and the position of the particle at the instant ¢,
with A(t) = Ke 82 and 2(t) = V(t — t). K re-
presents the maximum amplitude of s(¢) (K results from
optical power and particle area section), and 1/ defines
the width of the probe volume. %, denotes the time when
the particle reaches the center of the measuring volume. In
(3), the constant M is due to the difference between the in-
tensities of both beams. This offset, weighted by the gaus-
sian shape A(t), is called burst pedestal (M A(t)). Morover,
it should be noted that the time support of the signal, and
therefore the duration of the burst, depends on particle ve-
locity. Thus, the Doppler signal is roughly a sine-wave at
frequency F'g + Fp with a time-varying amplitude A(t).
The offset component M is then eliminated by an electrical
high-pass filter. After applying the QD technique (figure 2)
the following sine/cosine pair s;(t) = A(t) cos¢(t) and
s2(t) = A(t) sin ¢(t) are obtained, with ¢(t) = 2r Dx(t) +
¢g. After sampling, the discrete-time measured signals are
given by y; (kT'e) and y2(kTe) where T, is the sampling
period (in the rest of this document, the following notations
y1(kTe) = y1(k) and y2(kTe) = y2(k) are used). Hence,
one can write

A(t){M + cos[2n(Fp + Fp)t + ¢o]} (3)
A(t) {M + cos[2nFp + 2nDx(t) + ¢o]} (4)

yi(k) = A(k)cos o(k) + vi (k) )
ya(k) = A(k)sin (k) + va (k). (6)

In these relations, ¢(k) = 2nDx(k) + ¢o represents the
instantaneous phase with z(k) = V(kTe — tq), v1 (k) and
v2(k) are sequences of zero-mean independent gaussian ran-
dom variables with variance o2. The goal of signal proces-
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Fig. 3. Doppler signal for V =10 mm/s (SNR =27 dB).

sing is then to extract the particle velocity V' from the ob-
served signals y1 (k) and y2(k). As an example, figure 3
shows a simulated Doppler signal in the case of a 10mm/s
velocity with a 27dB Signal-to-Noise Ratio (SNR). The SNR
is defined as

SNR = 10log,, (K”/20%). (7

4. DETECTION OF PARTICLES ARRIVAL

The detection scheme is based on the use of a trigger which
compares the estimated amplitude of the Doppler signal with
a threshold. If noise is taken into account, the magnitude of
the Doppler signal is then equal to

Ap(k) = \[yi(k)+y3(k) (8)
= V51(k) + b1 (B) + [52(k) + b2 (k)] (9)

The Probability Density Function (PDF) of A;(k) is then
given by [6]

Ap(k AZ(k) + A%(k Ap(k)A(K

it = 228 | A0 1 [06 40
(10)
where A(k) = /s?(k) + s2(k) is the real amplitude of

the signal and Ip(u) = 5~ fOZﬂ exp(u cos ¢)d¢ is the modi-
fied Bessel function of the first kind and order O [6]. When
no particle is present in the measuring volume, A(k) = 0.
Then, y1 (k) = v1(k), y2(k) = v2(k) and (10) is reduced to
the Rayleigh PDF, the mean of which is

E[A, (k)] = K, = \/”TUQ = 1.250. (11)

In addition to that, for large SNR values (i.e. when A(k) is
high), (10) looks like a gaussian PDF. Hence, the mean of
this estimated amplitude is close to the true amplitude:

E[Ay(K)] = A(k). (12)

The figure 4 shows the evolution of the mean E[A (k)] ver-
sus A(k). The amplitude of the signal can be modeled as
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Fig. 4. Evolution of the mean E[Ay(k)] versus A(k).

the sum of a constant Ky = 1.25¢ and a time varying com-
ponent K5 (k) close to A(k) when the SNR is large enough.

Ap(k) = K1 + Ka(k). (13)

The amplitude estimator should be robust to modeling er-
rors; thus, Ko(k) can be modeled using a random walk.
Consequently, the state space representation of (5) and (6)
can be written as follows:

Xi(k+1) =
Yi(k) =

A1Xq (k) + Wa(k) (14
C1Xi1(k) + V() (15)

where the state vector X (k), the measurement vector Y (k)
(observed data), the state transition matrix A1 and the mea-
surement matrix Cq are

X1 (k) = [21(k), m2(K)]" = [K1, K2 (k)]

Vi) = [VRE 0] As = | 5 1 ] € =

[1,1]. Wy (k) = [0,w(k)]" and V4 (k) = v(k) are, respec-
tively, process and measurement noises which are white and
zero-mean noises with variances o2, and o2. These noise
vectors are statistically independent. Based on (14) and
(15) and from the initial conditions (P(0] — 1) = Py and
)A((0| — 1) = (0)), we can recursively calculate the mean,
)A((k|k), and the covariance, P (k|k), thanks to the Kalman
filter recursions: k =1,2,3,...

L1 (k) = Py(k|k — 1)x
CiT{CiPi(klk ~ )G + Ruv (kb))
X1 (klk) = X1 (k|k — 1)+
Ly (k)[Y1(k) — C1 X4 (k|k — 1)]
Py (k|k) = P1(k|k — 1) — L1 (k)C1P1(k|k — 1)
X1(k +1)k) = A Xy (k|k)
P1(k+ 1k) = A1 P (k|E)A1T + Ryw (k, k).

For example, figure 5 (left) shows the result of an estima-
tion of K1 (=) and E[A(k)] () i.e. the mean of the ampli-
tude of the Doppler signal. The detection is then performed
by comparing E[A(k)] to a threshold Ky, = 1.5 x K3
as shown in figure 5 (right). When the amplitude of the
Doppler signal is greater than K, it can be inferred that
a particle is present in the measuring volume and that the
observed signal is containing meaningful information.

1.5 1.2

(0] (0]

A 308

£ £

0.5

E E o4 x ~
0 0 detectian
0 2 4 6 8 10 0 2 4 6 8 10

KT (ms) KT, (ms)

Fig. 5. (left) Estimation of K1 (=) and E[Ay(k)] (-) the
mean of the amplitude of the Doppler signal. The real
amplitude is in gray. (right) Detector threshold (-) and
E[Ay(k)] (=) (V=10 mm/s, SNR = 12 dB).

5. PARTICLE VELOCITY ESTIMATION
After triggering, i.e. if a particle has entered in the measu-
ring volume, it is possible to estimate particle velocity. This

estimation is achieved thanks to an EKF. The state space
representation of the Doppler signal is then given by

Xk +1) =
Ya(k) =

A2Xo(k) + Wa(k) (16)
Glk,X2(k)] + Va(k) a7

with the state vector X (k) = [z1(k), 22 (k)" = [o(k), V]"
1 27nDT,

0 77|

W2 (k) and V2 (k) are,respectively, process and measure-

ment noises which are white and zero-mean statistically in-

dependent noises. In this case, the measurement equation

(17), described by (5) and (6), is highly non-linear. In order

to use a Kalman filter, these equations should be linearized

by means of a first order Taylor development around X (k).

The measurement matrix is then given by

and the state transition matrix A, = {

OG[k+1,X 2 (k
Ca(k+1) = _[8X2(k)( )] -

_ {—A(k+1)sin[5:‘1(k+1|k)]] (18)
= | +A(k+ 1) cos[z1 (k + 1]k)]

where A(k) is assumed to be known and close to E[A; (k)].
Then, the EKF can be summarized as: k=1,2,3,...

L2(k) = P2(k|k — 1))(

C,7 {C2P2(k|k ~1)Cs” + Roy (k, k)}_1
X (k|k) = Xo(k|k — 1)+

Ly (k)[Ya (k) — CaXa(k[k — 1)]
Py (klk) = Pa(klk — 1) — L2(k)C2P2(k|k — 1)
Xo(k + 1]k) = Ay Xo(k|k)
Pa(k + 1|k) = AaPa(k|k) A2 + Row (k, k)
(

Ca(k+1) = AG[k+1,X32 (k)]

0%a(B)  |xy0h)

As an example, figure 6 shows the temporal representation
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Fig. 6. Estimated velocity (left) and instantaneous phase
(right) (V = 10 mm/s, SNR =27 dB).

of the estimated instantaneous phase $ (k) and the estimated
particle velocity V.

6. RESULTS AND CONCLUSIONS

The detection-estimation scheme, derived in sections 4 and
5, is then compared with the performance of a Phase Deriva-
tive Based Estimator (PDBE) and the Cramer-Rao Bound
(CRB), described and developed in a previous paper [7].
The PDBE estimator is based on the definition of the instan-
taneous frequency: ¢(k) = arctan [ya(k)/y1(k)]. Indeed,
particle velocity is given by

‘//\v(k) — 27:D [¢(k + 1)2;6¢(k - 1)} ] (19)

The mean of V (k), calculated from 1000 samples equally
distributed around the time when the amplitude of the signal
is maximum, leads to an estimation of the particle velocity
V. The approximated CRB described in [7]

1 (28T, . 1

92 \\7 D " SNR

CRB(V) (20)
gives the lower bound on the variance of any unbiased es-
timator [5] of the particle velocity. 700 Monte-Carlo simu-
lations were run on simulated data at various SNR (3 dB,
6 dB, 9 dB, 12 dB, 15 dB, 18 dB, 21 dB, 24 dB, 27 dB,
30 dB,) and for several velocities. Signal parameters were
B =46407-10*m~', D =1.3126-10° m~!, K =1,
¢o = w/Tand T, = 1079 5. The results, shown on figure
7, indicate that EKF results for velocity estimation are very
close to CRB, especially when the SNR is high. As can be
seen, the EKF turns to be an effective estimator for LDV
measurements.

This research work proves that a joint detection-estimation
scheme using Kalman filters is a viable solution for parti-
cle velocity measurement with a good accuracy. The EKF,
although biased, works well in a large range of situations
and shows better performance than the PDBE. Moreover,
the detection technique, based on a random walk model of

3 6 9 12 15 18 21 24 27 30
SNR (dB)

Fig.7. CRB(V) (- - -) and variance of EKF (—o—) and PDBE
(—o—) estimators versus SNR (V = 10 mm/s).

the amplitude of the Doppler signal, does not need an ac-
curate knowledge of the real magnitude and, consequently,
is very robust. Especially, this method turns out to be suit-
able for real-time measurements and may be used in order
to design a low-cost integrated laser Doppler sensor.
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