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ABSTRACT

The paper proposes a new simplified algorithm to estimate the lo-
cation of an emitter by utilizing time difference of arrival (TDOA)
measurements. This is achieved by recasting the estimation prob-
lem in prolate spheroidal coordinates. Prolate spheroidal coordi-
nates greatly simplify the TDOA equations, producing a set of lin-
ear equations in the far field limit. The set of linear equations
corresponds to the hyperbolic asymptotes of the TDOA measure-
ments. We also develop a systematic approach that associates the
hyperbolic asymptotes with the emitter. In the near field the far-
field solution can be used to “seed” the iterative maximum likeli-
hood (ML) estimate, enabling convergence to the ML solution.

1. INTRODUCTION

Geolocation or position location of electromagnetic transmissions
has a wide variety of applications. In Australia, geolocation of
lightning strikes is used extensively to eliminate small bush fires
before they spread over large areas [1]. The requirement for geolo-
cation of mobile phone calls to emergency services (referred to as
E-911 in the US) has led to renewed interest in geolocation from
the telecommunications industry [2].

Geolocation by time difference of arrival (TDOA) is a com-
putationally attractive approach to passive localization of an emit-
ter. It requires solving a set of nonlinear equations obtained from
TDOA measurements. The maximum likelihood (ML) solution to
geolocation by TDOA does not have a closed-form solution and
requires an iterative gradient-descent algorithm to obtain a numer-
ical solution [3]. Iterative ML solutions exhibit convergence diffi-
culties. Closed-form suboptimal geolocation solutions have been
developed to avoid the convergence problems (see e.g. [4, 5, 6]).

In this paper, we simplify the problem of TDOA geolocation
by recasting it in prolate spheroidal coordinates. In the far field
limit the TDOA equations become linear and hence can be solved
analytically as the intersection of hyperbolic asymptotes. A sys-
tematic method is proposed to associate the hyperbolic asymptotes
with the emitter. In the near field the far field solution can be used
to “seed” the iterative ML estimate, enabling convergence to the
ML solution.

2. PROBLEM FORMULATION

Geolocation by TDOA, also referred to as range difference of ar-
rival (RDOA), is a technique for determining the position of an
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Fig. 1. A typical time difference of arrival setup. Receivers are
located at r1, . . . , r4 and the emitter at rem.

emitter from measurements of the time differences of arrival of
the emitter’s signal at pairs of receivers. Fig. 1 shows a two-
dimensional geolocation setup with an array of four receivers at
locations r1, . . . , r4 and an emitter at rem.

The time of arrival ti for a receiver located at ri of a signal
emitted from rem at time tem is given by

ti = tem +
‖ri − rem‖

c
, i = 1, . . . , N (1)

where c is the speed of propagation for the emitter signal, N is the
number of receivers and ‖.‖ denotes the Euclidean norm. Equa-
tion (1) contains three unknowns {tem, xem, yem} and three knowns
{ti, xi, yi} where rem = [xem, yem]T and ri = [xi, yi]

T with T

denoting the transpose operator. To solve (1) as a set of nonlinear
equations, we would need at least one equation for every unknown
parameter, i.e., we need at least three equations, and hence at least
three receivers. The first step to solving (1) is determining TDOA
between any pair of receivers

∆tij ≡ ti − tj =
‖ri − rem‖

c
− ‖rj − rem‖

c
, ∀i �= j (2)

thereby eliminating tem and reducing the number of equations by
one. There are N − 1 linearly independent TDOA equations for
a system consisting of N receivers. For convenience, and without
loss of generality, we reference the time of arrival to the N th re-
ceiver so that the N −1 linearly independent TDOA equations can
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be written compactly as⎡
⎢⎣

‖r1 − rem‖ − ‖rN − rem‖ − c∆t1N

...
‖rN−1 − rem‖ − ‖rN − rem‖ − c∆tN−1,N

⎤
⎥⎦ = 0. (3)

In practice the ∆tiN are not available. Instead we have the noisy
TDOA measurements ∆t̃iN defined by

∆t̃iN = ∆tiN + niN

where niN , i ∈ {1, . . . , N − 1}, denotes the additive noise cor-
rupting the TDOA measurements, which is usually assumed to be
a Gaussian random variable with zero mean and covariance matrix
K . If the emitter signal received by the sensors is subject to i.i.d.
noise, then the covariance matrix becomes [5]

K = σ2
n

⎡
⎢⎢⎢⎢⎣

1 1/2 · · · 1/2

1/2
. . .

. . .
...

...
. . .

. . . 1/2
1/2 · · · 1/2 1

⎤
⎥⎥⎥⎥⎦

where σ2
n is the TDOA noise variance.

The task of geolocation by TDOA is to determine the emit-
ter location from the knowledge of the receiver locations and the
RDOA measurements using the nonlinear vector equation (3). Equa-
tion (3) tells us that we need at least three receivers to provide two
linearly independent TDOA equations. From these two equations
it is possible to determine the two unknowns of the emitter loca-
tion [xem, yem]T in the absence of TDOA noise. For a given pair
of receivers the solution to (2) is a hyperbola. The intersection of
two or more hyperbolae gives the location of the emitter.

3. THE TAYLOR SERIES METHOD

While the emitter location can be seen by the intersection of the
hyperbolae pictorially, it is much harder to determine numerically
from the nonlinear coupled equations of (3). The reason for this is
two-fold. Firstly, in the presence of TDOA noise, (3) will not have
a solution, and, secondly, no closed-form solution exists for (3).
From now on, we will use the noisy TDOA measurements ∆t̃iN

in our analysis.
The Taylor-series method [3] effectively linearizes the noisy

version of (3) by taking the Taylor series expansion of

c∆t̃iN = ‖ri − rem‖ − ‖rN − rem‖ + cniN (4)

about an initial guess of the emitter location r(0), so that (4) be-
comes

c∆t̃iN = ‖ri − r(0)‖ − ‖rN − r(0)‖
+ ∇ (‖ri − r‖ − ‖rN − r‖)|r=r(0) (rem − r(0))

+ cniN + O((rem − r(0))2).

(5)

The gradient row vector is ∇ = [ ∂
∂x

, ∂
∂y

] and r = [x, y]T is the

position column vector. The notation O((rem − r(0))2) refers to
second and higher order terms in rem − r(0) which, if rem and
r(0) are sufficiently close, are negligible. By ignoring second and
higher order terms and stacking (5) for i = 1, . . . , N − 1, we get

f 0 + J0(rem − r(0)) ≈ cn, (6)

where f 0 is the (N − 1) × 1 column vector

f 0 =

⎡
⎢⎣

‖rN − r(0)‖ − ‖r1 − r(0)‖ + c∆t̃1N

...
‖rN − r(0)‖ − ‖rN−1 − r(0)‖ + c∆t̃N−1,N

⎤
⎥⎦ ,

(7)
J0 is the (N − 1) × 2 Jacobian matrix of f 0

J0 =

⎡
⎢⎢⎢⎣

(r1−r(0))T

‖r1−r(0)‖ − (rN−r(0))T

‖rN−r(0)‖
...

(rN−1−r(0))T

‖rN−1−r(0)‖ − (rN−r(0))T

‖rN−r(0)‖

⎤
⎥⎥⎥⎦ (8)

and n = [n1N , . . . , nN−1,N ]T is the TDOA noise vector.
The Taylor series method uses the weighted least squares es-

timate of rem in (6), i.e., r(0) − (JT
0 K−1J0)

−1JT
0 K−1f 0, to

update the estimated position of the emitter using the recursion

r(k + 1) = r(k) − (JT
k K−1Jk)−1JT

k K−1f k, k = 0, 1, . . .
(9)

The emitter location estimate occurs at the stationary point r(k +
1) = r(k). However, in practice, this will only occur when
k → ∞. Therefore, for practical reasons, the iterations of (9) are
stopped when ‖r(k + 1)− r(k)‖ < ε where ε is some predefined
threshold value.

The iterative Taylor series method derived above can be shown
to be equivalent to the Gauss-Newton implementation of the ML
estimate of the emitter location [3]. The ML cost function mini-
mized by the Taylor series method is

JML(r) = fT (r)K−1f (r) (10)

where f (r) = f k|r(k)=r . The Taylor series method can provide
accurate and robust results. However, it requires a good initial
guess r(0); otherwise, (9) may diverge because of the nonconvex-
ity of the ML cost function. The requirement of an accurate initial
guess is the major weakness of the Taylor series method. We are
going to propose a remedy for this problem in the following sec-
tions.

4. PROLATE SPHEROIDAL COORDINATES AND TDOA

The TDOA equations as expressed in (2) simplify greatly if they
are written in prolate spheroidal coordinates. In this section we
will recast (2) in prolate spheroidal coordinates and show how
from the resulting equation two lines of bearing can be obtained.

In three-dimensional space, prolate spheroidal coordinates are
a set of curvilinear coordinates which are related to Cartesian co-
ordinates {x, y, z} by [7]:

x = a cosh ξ cos η
y = a sinh ξ sin η sin φ
z = a sinh ξ sin η cos φ

(11)

where a is a constant scaling parameter.
Let us write the TDOA equation (2) in prolate spheroidal co-

ordinates. We start by considering a Cartesian coordinate system
{x′, y′, z′} in which two receivers are located at x′ = ±a and
y′ = z′ = 0, in which case

c∆t =
√

(x′ + a)2 + y′2 + z′2 −
√

(x′ − a)2 + y′2 + z′2

= 2a cos η.
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The sign ambiguity of η in cos η means that for a given ∆t there
are two possible values of η,

η = ± arccos

(
c∆t

2a

)
. (12)

For two-dimensional geolocation problems, we have φ = π/2
in prolate spheroidal coordinates, so that

x′ = a cosh ξ cos η.
y′ = a sinh ξ sin η

(13)

Not only does the fact that η is a constant for a given ∆t enable
us to quickly determine the TDOA hyperbola, but it also gives us
the emitter bearing in the far field limit. To see this, consider the
limit ξ → ∞ of (13):

lim
ξ→∞

x′ = aeξ cos η

lim
ξ→∞

y′ = aeξ sin η

which means that

lim
ξ→∞

y′

x′ = tan η

= tan

(
± arccos

(
∆t

2a

))
.

Hence the bearing can be easily related to the time difference of ar-
rival ∆t and the separation 2a = ‖rj −ri‖ between the receivers.
The bearing angle from the mid-point of a pair of receivers located
at ri and rj is

θ = α + η. (14)

The angle α is the bearing of the x′ axis with respect to the x axis,
hence

α = arcTan

(
yj − yi

xj − xi

)
(15)

where arcTan1 is the same as arctan except that it includes infor-
mation about quadrant of the argument, e.g., arcTan(−1

−1
) = −3π

4

whereas arctan(−1
−1

) = π
4
. Note that the angles α, η and θ are

bearings so that α and θ are zero on the x axis and η = 0 defines
the x′ axis; angles are positive in the anti-clockwise direction.

Equations (12), (14) and (15) enable us to determine the bear-
ing angles θ±

ij of the hyperbolic asymptotes with respect to the
horizontal axis associated with a pair of receivers located at ri and
rj whose TDOA measurement is ∆t̃ij :

θ±
ij = arcTan

(
yj − yi

xj − xi

)
± arccos

(
c∆t̃ij

‖rj − ri‖
)

. (16)

5. EMITTER LOCALIZATION USING HYPERBOLIC
ASYMPTOTES

Each TDOA hyperbola produces a pair of asymptotes with bearing
angles defined in (16). For N receivers, there will be 2(N − 1)
hyperbolic asymptotes, which we will refer to as bearing lines. Out
of 2(N −1) bearing lines, only N −1 of them are associated with
the emitter and, therefore, can be used for localization purposes.

1The Matlab equivalent of arcTan is atan2.

m1

m2

m3

rem

Fig. 2. Bearing lines for a geolocation scenario with N = 4 re-
ceivers.

Fig. 2 shows an example for N = 4 receivers. The bearing lines
emanate from midpoints of receiver pairs defined by

mi =
1

2
(ri + rN ). (17)

The association of bearing lines with the emitter does not al-
ways have a straightforward rule-based solution, except possibly
for the case of fixed receivers. If the receivers are moving, finding
the associated bearing lines becomes trickier because the geometry
changes continuously.

To associate bearings lines the first thing we do is a feasibility
check. This is done by determining if a given bearing line inter-
sects with another bearing line from a different midpoint. If no
intersection occurs that bearing is removed from our list of bear-
ings. This process is repeated for all bearings and at the end a final
list of feasible bearings and midpoints is created.

To triangulate the feasible bearings we use the pseudolinear
estimator [8] based on least squares to estimate the emitter location
from the feasible bearing lines. The pseudolinear estimate of rem

is
r̂LS = (AT A)−1AT b (18)

where

A =

⎡
⎢⎣

sin ϕ1 − cos ϕ1

...
...

sin ϕN−1 − cos ϕN−1

⎤
⎥⎦

(N−1)×2

b =

⎡
⎢⎣

[sin ϕ1,− cos ϕ1]m1

...
[sin ϕN−1,− cos ϕN−1]mN−1

⎤
⎥⎦

(N−1)×1

.

Here {m1, ϕ1}, . . . , {mN−1, ϕN−1} is the list of feasible bear-
ing lines with ϕi ∈ {θ+

iN , θ−
iN}. The resulting pseudolinear esti-

mate provides an excellent initial guess for the Taylor series method.
A weighted version of the pseudolinear estimate can also be con-
sidered to improve the estimation accuracy of (18) [9].

6. SIMULATIONS

The simulated geolocation setup and TDOA hyperbolae resulting
from noisy TDOA measurements are shown in Fig. 3. The true
emitter location is rem = [4, 30]T . The receivers are located at
r1 = [5, 3]T , r2 = [2, 0]T , r3 = [−3, 2]T and r4 = [0, 0]T .
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Fig. 3. Simulated TDOA geolocation setup.
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Fig. 4. Maximum likelihood cost function.

The TDOA noise variance is σ2
n = 0.004/c2 . The ML cost func-

tion for the simulated scenario of Fig. 3 is depicted in Fig. 4. Note
how irregular the cost function topology is. It is not only non-
convex, but also it appears to have a downward slope behind the
receivers on the opposite side of the emitter. This is the reason
for divergence experienced by gradient-descent algorithms when
initialized poorly. These particular features of the ML cost func-
tion topology reinforce the need for good initialization. In Fig. 5
we illustrate the application of emitter localization based on hy-
perbolic asymptotes. There are six bearing lines, three of which
are feasible. For completeness we have included all eight bearing
line combinations and plotted the pseudolinear estimates for them
in Fig. 5. The feasible bearing lines yielded the estimate shown
just below the emitter in Fig. 5. This estimate is used as the initial
guess for the Taylor series method. In this case only two iterations
of the Taylor series method gives the ML estimate of the emitter
location.
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Fig. 5. Geolocation using the Taylor series method with initial
guess obtained from the pseudolinear estimator.
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