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ABSTRACT
Tracking multiple speakers in an acoustic environment involves

jointly estimating the number of speakers and their states. This

important problem in signal processing is challenging in theory as
well as implementation. This paper presents a novel and funda-

mentally well-grounded framework for tracking multiple speakers

using random finite sets. Simulations are also presented to demon-

strate the performance in tracking a randomly varying number of
speakers in a reverberant room.

Keywords: Multi-target Tracking, Optimal Filtering, Particle

Methods, Point Processes, Random Sets, Sequential Monte Carlo.

1. INTRODUCTION

Tracking the positions of multiple speakers (or sources) in an acous-
tic environment has several applications in multimedia such as

automatic camera steering for video conferencing, discriminating

between individual speakers in multi-speaker environments, and

providing steering information for micro-phone arrays [2]. Sev-
eral approaches for tracking a single speaker have been proposed

[1], [6], [8], [3]. Traditional approaches [1], [6] transform the re-

ceived frame of data into a localisation function that exhibits a

peak in the location due to the speaker. However, reverberation
causes spurious peaks in the localisation function that may have

greater magnitudes than the peak associated with the speaker. Re-

cent developments [8], [3] exploited the fact that the peak due to

the true speaker follows a dynamical model from frame to frame,
whereas the spurious peaks, also known as clutter, exhibit no tem-

poral consistency. [8], [3] formulated the speaker tracking as non-

linear non-Gaussian filtering problem and solved it using a sequen-

tial Monte Carlo (SMC) algorithm (particle filter), yielding better
performance than traditional approaches.

The emphasis of this paper is the generalisation to tracking

multiple speakers, which is far from trivial. In a multi-speaker en-

vironment, speakers can appear or disappear in a random manner
and tracking involves jointly estimating the randomly time-varying

number of speakers as well as their states. The object of interest

in this case is the set of states of all speakers, whose cardinality

varies with time, whereas in single-speaker tracking, the object of

interest (the speaker state) has a fixed dimension. As discussed in
Section 2, multi-speaker tracking is a very difficult problem both in

theory and implementation and single-speaker tracking algorithms

cannot be easily extended for this purpose.

Using the theory of random finite sets (RFSs), or simple point
processes, in this paper we propose a novel and mathematically

well-founded framework to track multiple speakers in a noisy re-

verberative environment. The key is to treat the collection of speak-

ers as a single set-valued state, and the collection of observations

as a single set-valued observation. With appropriate notions of

probability density for RFS [4], [9], the multi-speaker tracking

problem can be rigorously cast as a Bayesian set-valued estima-
tion/filtering problem. Simulations show the proposed RFS or set-
valued estimation framework tracks multiple speakers in a rever-

berant room well.

2. MOTIVATION: MULTIPLES SPEAKERS AND
RANDOM FINITE SETS

This section outlines the differences between the objectives of mul-
tiple hypothesis tracking (MHT) and set valued estimation for track-

ing multiple speakers. The discussion below assumes a noisy re-

verberant room with a single microphone pair. Extension to mul-

tiple microphone pairs is given in 3.2.

2.1. Time varying Speaker and Measurement Model

Let the state of a speaker at time (or frame) k be

x = [x1, x2, x3, ẋ1, ẋ2, ẋ3]
T ∈ Es

`
⊂ R

6´
(1)

where [x1, x2, x3]
T is the speaker location, and [ẋ1, ẋ2, ẋ3]

T is

the speaker velocity. The motion of each speaker is modeled by a
discrete-time Markov process described by the transition density

fk|k−1(x|x
′) (2)

A Langevin process satisfies this assumption and is used for mod-

eling human motion in [8]. In the absence of clutter, a speaker with

state x at time k generates a true observation z ∈ Eo that can be

modeled by the likelihood function

gk(z|x). (3)

For example, suppose that at the k-th frame the speaker is lo-
cated at x and S1, S2 are the signals received at the microphone

pair whose coordinates are w1, w2 ∈ R3. In the absence of other

speakers, noise and reverberation, the signals S1 and S2 are de-

layed versions of each other whose cross-correlation peaks at the
time difference of arrival (TDOA)

∆(x) = c
−1(‖x − w1‖ − ‖x − w2‖) ∈ Eo := [−∆max, ∆max]

where c is the speed of sound and ∆max is the maximum possi-

ble delay defined by the dimensions of the room and microphones

locations. Thus, the TDOA observation z can be modeled by a

Gaussian with mean ∆(x) and variance σ2 which is truncated to
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[−∆max, ∆max] [8]. We assume that each clutter point is dis-

tributed according to the density on Eo

ck(z), z ∈ Eo. (4)

A typical choice for the clutter density is the uniform density on

Eo [8].

2.2. Multi-speaker Model

In a multi-speaker scenario, speakers appear and disappear ran-

domly. For the duration the speaker is speaking, it moves accord-
ing to the dynamic model (2) in a reverberant room with back-

ground noise. At time k, let M(k) be the number of speakers

present with states xk,1, . . . , xk,M(k), and let

Xk = {xk,1, . . . , xk,M(k)} ⊂ Es. (5)

Zk = {zk,1, . . . , zk,N(k)} ⊂ Eo (6)

denotes the set of measurements received at time k where some of

the N(k) observations may be due to clutter. If z ∈ Zk is due to
a speaker with state x, then it is distributed according to gk(·|x)
(3), which we denote by z ∼ gk(·|x). If z is due to clutter, then

z ∼ ck(·) (4). The number of clutter points are assumed to be

Poisson distributed with rate λk. Let Z1:k = {Z1, . . . , Zk} be the
collection of all measurements sets received until time k. The aim
of multi-speaker tracking is to extract from Z1:k the information
concerning when a speaker appeared and disappeared, as well as
the trajectory it took, for all speakers that generated measurements
between time 1 to k. This is also the aim of classical multi-target

tracking and achieved by the multiple hypothesis tracking (MHT)

filter and its variants [5].

2.3. Set Valued Estimation vs MHT based filters

The MHT approach is one way to achieve the above stated aim

of multi-speaker tracking. Given Z1:k, we may hypothesize that a

certain speaker, called speaker i, was present from time 1 to time k
and generated observations {z1,i1 , z1,i2 , . . . , z1,ik

}. z1,im ∈ Zm

was the observation at time m due to speaker i, 1 ≤ m ≤ k. Ob-

viously 1 ≤ im ≤ N(m) and it is not necessary that i1 = i2 =
. . . = ik. Assuming that new speakers have a state distributed
according to the prior density γ, we may use γ, the observations

{z1,i1 , z1,i2 , . . . , z1,ik
}, together with the transition (4) and like-

lihood (3) to compute the filtered density at time k for speaker

i using the standard Bayes recursion. (It could also be hypothe-
sised that speaker i appeared at time m, disappeared at time m′

(1 ≤ m ≤ m′ ≤ k) and generated only one observation, or two,

and so on.) An association hypothesis is defined as an assignment

of all measurements in Z1:k to speakers and clutter subject to the

constraint that a speaker generates none or one measurement at a
time. The set Hk of all association hypotheses at time k is a large

set and the problem of generating Hk+1 from Hk is intractable.

The MHT filter and its variants recursively propagate Hk and re-

lies heavily on hypothesis pruning for a tractable implementation
[5].

In target tracking applications, the MHT filter performs well

when clutter is low, targets are well separated and follow pre-
dictable trajectories. For speaker tracking, the trajectories are com-

plicated, the speakers can be close to each other and clutter density

is high due to reverberation. Thus, MHT is not expected to work

well here. Furthermore, the time between measurements are short

and requires a fast filtering algorithm for real-time tracking. MHT

is computationally intensive and is not suited for real-time imple-

mentation.
In Section 3 of this paper we propose a practical alternative to

speaker tracking based on set valued estimation. Unlike the MHT

approach that generates associations, the random set approach gen-

erates estimates of the speaker states but without any association.
Advantage: It is important to note that only the estimates of

the speaker states are obtained at time 1 to k with set valued es-

timation. There is no trajectory information, or the path individ-

ual speakers took, as was available in Hk. However, using post
MHT like processing, it is possible to extract such information.

The important practical advantage here is that recursively estimat-

ing the state of all speakers present at time k is tractable and can

be done quickly using SMC [9]. This provides a quick online al-
gorithm that may be use for beam steering, assuming we are only

interested in locating and following acoustic sources without dis-

criminating between them. The other advantage is that we have

decoupled the state estimation problem from the problem of as-
sociation and forming tracks. In the MHT, one did the latter and

then the former. So, we are free to use more computationally in-

tensive discrete optimisation based algorithms to solve the asso-

ciation problem off-line while still tracking states on-line. On a
more technical note, we remark that the method proposed in [8]

is not a rigorous Bayesian framework as one is using the standard
Bayes recursion for filtering when the states and observations have

fixed dimensions on a problem where the observation dimension is
varying.

3. RANDOM SET FORMULATION AND ALGORITHMS

The multi-speaker state and the observation at time k are naturally

represented as finite sets Xk ⊂ Es (5) and Zk ⊂ Eo (6). Un-

certainty in a multi-speaker system is characterised by modeling

multi-speaker state and observation as random finite sets (RFS) Ξk

and Σk respectively. The formal definition of RFS and the notion
of probability density for RFS can be found in [4], [9].

Given a realisation Xk−1 (see (5)) of RFS Ξk−1, the multi-

speaker state at time k can be modeled as the RFS

Ξk = Sk(Xk−1) ∪ Γk (7)

where Sk(Xk−1) denotes the RFS of speakers who continue to

time k, and Γk is the RFS of new speakers at time k. The sta-

tistical behaviour of the RFS Ξk is characterised by the Markov

transition density fk|k−1(Xk|Xk−1). Note that the same notation
fk|k−1 is used for the individual speaker transition density and the

multi-speaker transition density. However, the meaning is clear

depending on wether the arguments of fk|k−1 are sets or vectors.

Let bk denote the probability density of Γk, the RFS of new speak-

ers, under suitable independence assumptions, it was shown in [4]
that

fk|k−1(Y |X) =
X

W⊆X

sk|k−1(W |X)bk(Y − W ) (8)

sk|k−1(W |X) = p
|W |
S (1 − pS)|X|−|W | ×

X
1≤i1 �=···�=i|W |≤|X|

|W |Y
j=1

fk|k−1(yj |xij
) (9)

where pS denotes the probability that the speaker continues to time

k.
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Similarly, given a realisation Xk of Ξk, the multi-speaker ob-

servation can be modeled by the RFS

Σk = Θk(Xk) ∪ Ck (10)

where Θk(Xk) denotes the RFS of measurements generated by

Xk , and Ck denotes the RFS of clutter. The statistical behaviour
of the RFS Σk is described by the multi-speaker likelihood [4]

gk(Z|X) =
X

W⊆X

hk(W |X)lk(Y − W ) (11)

hk(W |X) = p
|W |
D (1 − pD)|X|−|W | ×

X
1≤i1 �=···�=i|W |≤|X|

|W |Y
j=1

gk(zj |xij
) (12)

where pD denotes the probability of detection and lk(·) denote the
probability density of the RFS Ck. In the case of state dependent

clutter lk(·|X) is used instead. Again, the same notation gk is

used for the individual speaker likelihood and the multi-speaker

likelihood, but the meaning is clear depending on whether the ar-
guments of gk are sets or vectors.

Let pk|k(Xk|Z0:k) denote the multi-speaker posterior density.

Then, the optimal multi-object Bayes filter is given by the recur-

sion

pk|k−1(Xk|Z0:k−1)

=

Z
fk|k−1(Xk|X)pk−1|k−1(X|Z0:k−1)µs(dX) (13)

pk|k(Xk|Z0:k)

=
gk(Zk|Xk)pk|k−1(Xk|Z0:k−1)R

gk(Zk|X)pk|k−1(X|Z0:k−1)µs(dX)
. (14)

where µs is a dominating measure [9]. Note (13), (14) has the
same form as the standard fixed dimension Bayesian recursion ex-

cept that arguments are now set-valued and the integrals are now

set integrals.

3.1. The PHD Filter

The Bayesian propagation equations (13), (14) involves the evalua-

tion of multiple set integrals. In [9] a generic particle filter has been

proposed to implement it. A cheaper alternative to propagating

pk|k(Xk|Z0:k) is the Probability Hypothesis Density (PHD) filter,
which only propagates the first moment of pk|k(Xk|Z0:k) [4]. The

PHD (also known as intensity or 1st moment) DΞ : Es → R+ of

a RFS Ξ is defined by

DΞ(x)≡E

"X
w∈Ξ

δw(x)

#
=

Z X
w∈X

δw(x)PΞ(dX). (15)

The PHD measure of a region S ⊆ E, i.e.
R

S
DΞ(x)dx, gives the

expected number of elements of Ξ that are in S. The peaks of the

PHD provide good estimates for the elements of Ξ.

Let Dk, denote the PHD of the RFS Ξk|Z0:k (which is dis-

tributed according to the posterior pk|k). Dk satisfies a recursion
similar to the Bayes recursion, i.e., Dk is obtained from Dk−1 and

the new measurement set Zk . Assuming that the predicted RFS

Ξk|Z0:k−1 is Poisson, it was shown in [4] that

Dk =
“
Ψ

Zk

k ◦ Φk|k−1

”
(Dk−1) . (16)

The PHD prediction and update operators, denoted by Φk|k−1 and

Ψ
Zk

k , are given respectively by

(Φk|k−1α)(x) = pS〈fk|k−1(x| ·), α〉 + γk(x), (17)

(Ψ
Zk

k α)(x) =

2
4υ+

X
z∈Zk

pDgk(z|x)

λkck(z)+pD〈gk(z| ·),α〉

3
5α(x), (18)

where α is a function on Es, γk denotes the PHD of the RFS Γk

of new speakers, υ = 1− pD, ck denotes the density of individual

clutter point, λk denotes the average number of Poisson clutter

points and 〈f, g〉 =
R

E
f(ζ)g(ζ)dζ.

Note that we are estimating the speaker states at time k with

the PHD Dk, which is a function on Es, and is cheaper to prop-

agate than the multi-target posterior. A sequential Monte Carlo

implementation of the PHD filter is given in [9].

3.2. Multiple microphone pairs

For L pairs of microphones, let Z
(i)
k denote the observation set of

the i-th microphone pair. The Bayes recursion (13), (14) still ap-

plies if we define Zk ≡ (Z
(1)
k , ..., Z

(L)
k ) and gk(Zk|X) to be the

joint likelihood gk(Z
(1)
k , ..., Z

(L)
k |X). Moreover, assuming condi-

tional independence of the observations between the microphone

pairs,

gk(Zk|X) =
LY

i=1

g
(i)
k (Z

(i)
k |X). (19)

where g
(i)
k (Z

(i)
k |X) denotes the likelihood of the i-th pair. The

PHD prediction equation (17) still applies, but unfortunately the
PHD update (18) becomes very complex, even when gk(Zk|X)
decouples as in (19). However, the update can be approximated by

ΨZk
k 
 Ψ

Z
(L)
k

k ◦ · · · ◦ Ψ
Z

(1)
k

k . (20)

Note that the operators Ψ
Z

(i)
k

k , i = 1, ..., L do not commute and

thus the filter output depends on the order of the updates. As a

rule of thumb, update with the most ‘reliable’ pair of microphones

should be done first.

4. SIMULATIONS

To demonstrate the applicability of the proposed framework, con-

sider an unknown and time varying number of speakers in a 3m×
3m × 2.5m room with 2 microphone pairs placed at ([1, 0, 1]T ,

[2, 0, 1]T ) and ([0, 1, 1]T , [0, 2, 1]T ) respectively. Each speaker

moves around in the room according to a Langevin model as in

[8]. Speakers can appear or disappear in the scene at any time. In

(9), pS = 0.95. The appearance of new speakers at time k is mod-
eled by a Poisson RFS with uniform intensity (over the room) and

rate = 0.1. A probability of detection of 1 is used. The effect of

reverberation is modeled by Poisson clutter with uniform intensity

and rate = 5 at each microphone pair. The TDOA observations at
each microphone pairs that are fed to the PHD filter. Figures 1, 2,

3 and 4 shows the PHD of positions at various times. From these

Figures observe the close proximity between the peaks of the PHD

and the true positions of the speakers.
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Fig. 1. PHD at k=1
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Fig. 2. PHD at k=6

5. CONCLUSION

Tracking multiple speakers is a challenging problem both in the-

ory and implementation. While traditional tracking approaches are

hypothesis based, this paper advocates a set-valued estimation ap-

proach. Modeling the multiple speakers as a dynamic random fi-

nite set enabled the tracking problem to be cast as a set-valued
Bayesian estimation problem. Moreover, we have demonstrated

that the set-valued estimation approach results in tracking algo-

rithms that can be implemented on-line. Simulations show good

tracking performance and motivates a real scenario study.
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