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ABSTRACT

We first revisit the problem of optimal low-rank matrix approx-
imation, from which a bi-iterative least square (Bi-LS) method
is formulated. We then show that the Bi-LS method is a natural
platform for developing subspace tracking algorithms. Compar-
ing to the well known bi-iterative singular value decomposition
(Bi-SVD) method, we demonstrate that the Bi-LS method leads to
much simpler (and yet equally accurate) linear complexity algo-
rithms for subspace tracking. This gain of simplicity is a surpris-
ing result while the reason behind it is also surprisingly simple as
shown in this paper.

1. INTRODUCTION

Subspace has played an important role in many areas of modern
signal processing. Although subspace can be obtained in theory
via the eigenvalue decomposition (EVD) of a covariance matrix or
the singular value decomposition (SVD) of the corresponding data
matrix, the cost of directly computing EVD or SVD can be pro-
hibitively high in real-time applications where the data dimension
is high. Therefore, there is a practical need for efficient subspace
tracking techniques that yield good estimates of the desired sub-
space.

A number of subspace tracking algorithms have been proposed
in the past, see [3], [4], [8], [11], and references therein. Among
them, a family of power-based subspace algorithms have the im-
portant features: low complexity and fast convergence. The power
family includes the Oja algorithm [10], the PAST algorithm [14],
the NIC algorithm [9], and the Bi-SVD algorithm [13]. The princi-
ple behind the Bi-SVD algorithm has recently received a renewed
interest as shown in [2]. Bi-SVD stands for bi-iterative singu-
lar value decomposition, which is also known as QR based bi-
orthogonal iterations for computation of SVD [12].

In this paper, we show that Bi-SVD is not the best framework
for formulating efficient subspace tracking algorithms, and a better
framework comes from bi-iterative least square (Bi-LS) method.
The Bi-LS method is a simple variation of the alternating power
method for computing optimal reduced rank filters [6], [7].

2. THE BI-LS METHOD FOR OPTIMAL LOW-RANK
MATRIX APPROXIMATION

It is well known that given a data matrix � ∈ �
L×N , their r ≤

min(N, L) dominant singular values and vectors can be computed
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by the Bi-SVD method as listed in Table 1. Under a mild condi-
tion, the columns of �A(k) ∈ �

L×r converge to the r dominant
left singular vectors, the columns of�B(k) ∈ �N×r converge to
the r dominant right singular vectors, and both�A(k) and�B(k)
converge to the r×r diagonal matrix of the dominant singular val-
ues of�.

We now examine the optimal low-rank approximation of�. It
is known that the optimal low-rank approximation can be obtained
by minimizing the following cost function:

�(���) = ‖� −��H‖2
F (1)

By minimizing the above function with respect to � and� alter-
natingly, we have the following algorithm:

�
�(k) = ��(k − 1)�(k − 1)

�(k) = �H�(k)
�
�H(k)�(k)

�−1 (2)

where �(k − 1) = (�H(k − 1)�(k − 1))−1. It can be shown
[6], [7] that with a weak condition on the initial matrix �(0) and
the data matrix �, the product of �(k)�H(k) from (2) globally
and exponentially converges to the optimal rank-r approximation
�r of�.

Let us write the QR decomposition of�(k) and�(k) as

�
�(k) = �A(k)�A(k)
�(k) = �B(k)�B(k).

(3)

Substituting �(k − 1) = �B(k − 1)�B(k − 1) and �(k) =
�A(k)�A(k) into the right side of (2) yields

�
�(k) = ��B(k − 1)
�(k) = �H�A(k)�−H

A (k)
(4)

where for simplicity, the choice of �(k − 1) = �−1
B (k − 1) is

used without affecting the global convergence property [7]. The
above algorithm is named the Bi-LS method and summarized in
Table 2.

A unique property of the Bi-LS method is that from Table 2,

�
H
B (k − 1)�(k) = �

H
B (k − 1)�H

�A(k)�−H
A (k)

= �
H(k)�A(k)�−H

A (k)

= �. (5)

This equation together with the second part of (3) implies that

�
H
B (k − 1)�B(k) = �

−1
B (k). (6)
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Table 1. Bi-SVD Method for SVD Computation

Initialization: �B(0) =

�
�r

�

�
For k = 1, 2, · · · until convergence Do:�
�������

First Step:
�(k) = ��B(k − 1)
�(k) = �A(k)�A(k) skinny QR decomposition
Second Step:
�(k) = �H�A(k)
�(k) = �B(k)�B(k) skinny QR decomposition

Hence, for the Bi-LS method, the upper-triangular matrix �B(k)
becomes the identity matrix at convergence.

For the Bi-LS method, we can show that if�B(k− 1) is right
multiplied by a unitary matrix, the corresponding �(k) is also
right multiplied by the same unitary matrix. When�B(k) is iden-
tity, the corresponding �B(k) remains the same as �B(k − 1)
right multiplied by the same unitary matrix. But for the Bi-SVD
method, if �B(k − 1) is right multiplied by a unitary matrix, the
corresponding�B(k) is always altered by a different unitary ma-
trix (even at convergence). It is the above property that makes the
linear complexity version of the Bi-LS method much simpler than
the counter part of the Bi-SVD method. The details of a derivation
of the fast Bi-LS algorithm are shown in the next section.

For the Bi-LS method, �A(k) converges to a product of the
matrix of the left principal singular vectors and an r×r unitary ro-
tation matrix, and a similar property holds for�B(k). Each of the
two unknown rotation matrices, when desired, can be computed
from the SVD of the r × r upper-triangular matrix �A(k). This
additional computation does not affect the complexity order of the
Bi-LS method provided that r is much smaller than min(N, L).

3. FAST BI-LS ALGORITHM FOR SUBSPACE
TRACKING

We assume that the N -dimensional input vector �(t) is available
at time t. To track time-varying subspaces, a data window should
be applied at any time. The exponential and sliding windows are
two common windows. The sliding window is known to be more
suitable for suddenly varying signals than the exponential window.
In this paper, we consider a hybrid (sliding exponential) window.

The hybrid window is represented by the following scheme of
data matrix update:

�
�(t)

αL/2β1/2�H(t − L)

�
=

�
β1/2�H(t)

α1/2�(t − 1)

�
(7)

where 0 < β ≤ 1 and 0 < α ≤ 1. Now, replace the itera-
tion index k in Table 2 by the discrete time index t to yield the
sequential Bi-LS subspace algorithm. Postmultiplying both sides
of (7) by �B(t − 1) and introducing a compressed data vector
�(t) = �H

B (t − 1)�(t), we have

�
�(t)
�H

L (t)

�
=

�
β1/2�H(t)

α1/2�(t − 1)�B(t − 1)

�
(8)

where �L(t) � αL/2β1/2�H
B (t − 1)�(t − L).

Table 2. Bi-LS Method for Optimal Low-Rank Matrix Approxi-
mation

Initialization: �B(0) =

�
�r

�

�
For k = 1, 2, · · · until convergence Do:�
�������

First Step:
�(k) = ��B(k − 1)
�(k) = �A(k)�A(k) skinny QR decomposition
Second Step:
�(k) = �H�A(k)�−H

A (k)
�(k) = �B(k)�B(k) skinny QR decomposition

A key step to developing fast subspace tracking algorithms is
to introduce a low-rank approximation to�(t). From Table 2, we
have

�(t)�B(t − 1) = �A(t)�A(t). (9)

Thus, we obtain

�(t− 1)�B(t− 1) � �A(t− 1)�A(t− 1)�−1
B (t− 1). (10)

Note that (6) has been employed above. Since both�A(t−1) and
�−1

B (t−1) are upper-triangular matrices, the product of�A(t−1)
and �−1

B (t − 1) is still an upper-triangular matrix. This implies
that�−1

B (t − 1) does not affect the subspace of�A(t − 1). Fur-
thermore, according to the earlier discussion, �B(t) can be ap-
proximated by an identity matrix. Therefore, (10) can be further
simplified as follows:

�(t − 1)�B(t − 1) � �A(t − 1)�A(t − 1). (11)

Thus, substituting (11) into (8) yields the following update:�
�(t)
�H

L (t)

�
�
�

β1/2�H(t)

α1/2�A(t − 1)�A(t − 1)

�
. (12)

Taking the notation

��A(t − 1) =

�
0T 1
���1 0

�
�A(t − 1) (13)

and letting the L dimensional vector 	 = [1, 0 · · · 0]T , �(t) can
be computed recursively by

�(t) � α1/2 ��A(t − 1)�A(t − 1) + β1/2
	��H

(t) (14)

where ��(t) = �(t)−(α/β)1/2�H
A (t−1)
AL

(t−1) and 
AL
(t−

1) = �QH
A (t − 1)	. Decompose the vector 	 into two vectors

orthogonal to each other:

	 = 	⊥(t) + ��A(t − 1)
AL
(t − 1). (15)

Substituting (15) into (14) yields

�(t) �
���A(t − 1)

	⊥(t)

‖	⊥(t)‖
�
�

H
A (t)

�
�A(t)
0 . . . 0

�
(16)

where ‖	⊥(t)‖ denotes the norm of the vector 	⊥(t),�A(t) is a
sequence of orthonormal Givens plane rotations and �A(t) is an
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r × r upper-triangular matrix that satisfies�
�A(t)
0 . . . 0

�
= �A(t)

�
α1/2�A(t − 1) + β1/2�AL

(t − 1)��H
(t)

β1/2‖�⊥(t)‖��H
(t)

�
.

(17)

Clearly, (16) suggests a QR decomposition of �(t). The desired
orthonormal matrix��(t) can be obtained from the following re-
cursion:

[��(t) �] =

���A(t − 1)
�⊥(t)

‖�⊥(t)‖
�
�
�

� (t) (18)

where the symbol � denotes a column vector of no interst.
Note that (17) involves a special updating problem of form

“upper-triangular plus rank one”. This special updating problem
can be solved simply by 2r Givens plane rotations [5]. Thus, (18)
can be recursively computed and requires only 8Lr flops ( a flop
stands for a multiplication and an addition).

To update �B(t) recursively, we now consider the following
identity:�

�
H(t) αL/2β1/2

�(t − L)
� �

�A(t)�−H
A (t)

0 . . . 0

�
=
�
β1/2

�(t) α1/2
�

H(t − 1)
� �

�A(t)�−H
A (t)

0 . . . 0

�
. (19)

According to the second step in Table 2, we get

	(t) =
�
β1/2

�(t) α1/2
�

H(t − 1)
� �

�A(t)�−H
A (t)

0 . . . 0

�
.

(20)
Premultiplying both sides of (20) by �H

B (t − 1) and employing
(8) yields

�
H
B (t − 1)	(t) = �

H(t)�A(t)�−H
A (t)

= 
r. (21)

We decompose the vector �(t) to two vectors orthogonal to
each other:

�(t) = �⊥(t) +�B(t − 1)�(t). (22)

Substituting the representation �(t) and the low-rank approxima-
tion (11) into (20), after proper manipulations,yields

	(t) �
�
�B(t − 1)

�⊥(t)

‖�⊥(t)‖
�
�

H
B (t)

�
�B(t)
0 · · · 0

�
(23)

where�
�B(t)
0 · · · 0

�
= �B(t)

�

r

β1/2‖�⊥(t)‖�H
A1

(t)�−H
A (t)

�
(24)

where ‖�⊥(t)‖ denotes the norm of the vector�⊥(t),and �A1
(t) �

�H
A (t)�. The desired orthonormal matrix �B(t) can be updated

recursively from the following:

[�B(t) �] =

�
�B(t − 1)

�⊥(t)

‖�⊥(t)‖
�
�

H
B (t). (25)

Table 3. A Bi-LS Subspace Tracking Algorithm .

Initialization: � = [1, 0 . . . 0]T ;��(0) =

�

r

�

�
;

��(0) =

�

r

�

�
;��(0) = 
r

FOR each t, Do:���������������������������������������	

Input: �(t)
First Step:��A(t − 1) =

�
0T 1

L−1 0

�
�A(t − 1)

�AL
(t − 1) = ��H

A (t − 1)�

�(t) = �H
B (t − 1)�(t)��(t) = �(t) − (α/β)1/2�H

A (t − 1)�AL
(t − 1)

�⊥(t) = � − ��A(t − 1)�AL
(t − 1)�

�A(t)
0 . . . 0

�
=

�A(t)

�
α1/2�A(t − 1) + β1/2�AL

(t − 1)��H
(t)

β1/2‖�⊥(t)‖��H
(t)

�
[�A(t) �] =

���A(t − 1) �⊥(t)
‖�⊥(t)‖

�
�H

A (t)

Second Step:
�A1

(t) = �H
A (t)�

�⊥(t) = �(t) −�B(t − 1)�(t)
�A(t)��A1

(t) = �A1
(t) back substitution−−−−−−−−−−−−−−→��A1

(t)�
�B(t)
0 · · · 0

�
= �B(t)

�

r

β1/2‖�⊥(t)‖��H
A1

(t)

�
[�B(t) �] =

�
�B(t − 1) �⊥(t)

‖�⊥(t)‖

�
�H

B (t)

This updating operation requires 4Nr flops. In addition, let

�A1
(t) = �A(t)��A1

(t). (26)

Since �A(t) is the upper-triangular matrix, the vector ��A1
(t) is

easy to be solved only by O(r2) backsubstitution operations.
Finally, a complete quasicode of the proposed Bi-LS subspace

tracking algorithm is summarized in Table 3. The new algorithm
has a principal computational complexity of 6Nr + 9Lr + O(r2)
flops per each iteration. This Bi-LS algorithm is more efficient
in computations than the counter part of the Bi-SVD algorithm,
which is the sliding window adaptive SVD (SWASVD3) algo-
rithm [2] that has a principal computational complexity of 27Nr+
13Lr + O(r2) flops. The Bi-SVD-1 algorithm shown in [13] uses
an exponential window and yields the right subspace only (i.e.,
�B(k)). The corresponding version of the Bi-LS method is also
more efficient but of the same accuracy. Due to space limitation,
we can not include more details.

4. PERFORMANCE EVALUATION

We now illustrate the performance of the Bi-LS algorithm for sub-
space tracking by simulations. The data vector consists of two in-
dependent complex sinusoidal sources plus a complex white Gaus-
sian noise [2]. The frequencies of two sources change abruptly at
different time instants (one at t = 200, and another at t = 400).
The estimated frequencies are obtained by the ESPRIT/MatrixPencil
method. The accuracy of the estimated subspace is measured by
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Fig. 1. Subspace tracking performance of several orthonormal sub-
space algorithms. The curves of Bi-SVD-1 and OPAST overlap
each other.

the maximum principal angle [5] between the estimate and the ex-
act. The exact subspace is defined to be the subspace computed by
the exact SVD of the same data matrix at each time.

Fig.1 shows the subspace tracking performance of the five al-
gorithms: Bi-LS, SWASVD3 [2], Bi-SVD-1 [13], FAST [11], and
OPAST [1]. Among them, the SWASVD3 and the FAST are based
on sliding rectangular window, whereas the Bi-SVD-1 and OPAST
are based on exponential window. The Bi-SVD-1 and OPAST have
the same performance in accuracy. All these algorithms produce
orthonormal subspace basis vectors. Except FAST, all algorithms
are power-based and have the same tracking performance although
the underlying data window affects the tracking pattern. The pa-
rameters used in this test are N = 80, r = 2, L = 100, α = 0.98,
SNR=5.7dB.

5. CONCLUSION

We have presented a new method for developing subspace track-
ing algorithms. This new method called Bi-LS method contrasts
against the Bi-SVD method that has been applied by others. We
have shown that for subspace tracking, the Bi-LS method leads to
simpler algorithms than the Bi-SVD method while the tracking ac-
curacy is the same (provided that the same data window is consid-
ered). Due to lack of space, several simpler versions of the Bi-LS
method (with the same accuracy of subspace tracking but relaxed
requirement on orthonormality and right versus left subspaces) are
not included but will be reported in a upcoming full paper.
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