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ABSTRACT

For emerging multiple-input multiple-output communica-
tion systems, we investigate an algorithm that compensates
inter-symbol interferences and suppresses interferences among
channels as well. In general, such an algorithm requires
more complicated computations than single channel algo-
rithms, and this causes much numerical errors such as trun-
cation errors during running the algorithm on digital ma-
chines. In this paper, we develop a multi-channel least squares
order recursive lattice smoother that suppresses the inter-
symbol and inter-channel interferences while being numer-
ically stable in the finite precision computation.

1. INTRODUCTION

Multiple-input Multiple-output (MIMO) antenna array sys-
tems promise us to achieve high speed data transmission
within limited frequency bands. It can be said that the MIMO
antenna arrays can be considered as virtual parallel channels
in a Rayleigh flat fading environment [1,2], where the the
MIMO channel capacity can increase linearly if the chan-
nel coefficients are statistically independent and they are
known to receivers [3]. Various studies of the MIMO sys-
tems have been made for the flat fading channels. In [4],
it has been showed that a simple VBLAST(Vertical Bell
Laboratories Layered Space-Time) in a quasi-static narrow-
band indoor radio channel achieved its spectral efficiency
of 20-40 bits/sec/Hz at average SNR’s ranging from 24 to
34 dB. Other studies exploiting the antenna diversity of the
MIMO systems such as an STCM(Space Time Coding Mo-
dem) have been also proposed in [5,6]. In these efforts,
the flat fading environment have usually been assumed in
their algorithms. For wideband wireless communications,
frequency selective channels cause multipath inter-channel
interferences to degrade the performance of the MIMO sys-
tems. To protect the system against the degradation, it is
necessary such an algorithm that not only compensates the
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signal distortion due to each channel but also suppresses
the inter-channel interferences. In this paper, we propose
a highly numeric-stable algorithm, the multi-channel least
squares order recursive lattice smoother (MLSORLS), which
equalizes the MIMO channels and suppresses their inter-
ferences at the same time. The MLSORLS is numerically
much stable than any other adaptive algorithms in the finite
precision computation; its lattice structure has inborn nu-
merical stability, furthermore, it is a order recursive smooth-
ing algorithm which has better numerical stability than those
of other delayed filtering algorithms [9]. Computational
complexity increases rapidly as the number of antennas of
the MIMO systems increase. In other words, the numer-
ical property of algorithms being used in the MIMO sys-
tems gets more important. In this sense, we believe that the
proposed algorithm contributes to such a complex imple-
mentation of the MIMO systems. The next section briefly
shows the derivation of the MLSORLS. In Section 4, we
show some simulation results of the MLSORLS and com-
pare them with other algorithms. Finally, we give our con-
cluding remarks in Section 5.

2. THE MLSORLS ALGORITHM

The overall system model is depicted in Figure 1. The signal
vector d(k) is transmitted by the l transmitting antennas,
and propagates through the MIMO channel. Then, the s
receiving antennas receive x(k) at the end of the MIMO
channel. During the transmission, signals are distorted and
the white Gaussian noises are added. We shall design the
efficient discrete-time MLSORLS system

y(k) = CT
M(k)xM(k), (1)

where

y(k) = [y1(k) y2(k) . . . yl(k)]T ,

xM(k) = [x1(k) . . . xs(k) . . . . . .

x1(k − M + 1) . . . xs(k − M + 1)]T ,

CM (k) = [cT
1 (k) cT

2 (k) . . . cT
M(k)]T,
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where M is the order of the MLSORLS, and ci(k) is the
i-th order s × l channel impulse response matrix.
The smoother error vector is

es
M(k) = d(k − �M

2
�) − y(k), (2)

where � � is the well-known floor operator. The objective is
to minimize the sum of the squared errors,

E(N) =
N∑

k=M−1

esT
M (k)es

M(k). (3)

The optimal value of the CM (N) which minimizes (3) can
be easily obtained as the following normal equation,

RM (N)CM (N) = rM (N), (4)

where

RM (N) =
N∑

k=M−1

xM(k)xT
M(k),

rM (N) =
N∑

k=M−1

xM(k)dT(k − �M
2
�).

Before we go on, we refer to the multi-channel lattice pre-
dictor. We abbreviate its derivation in this paper because
of paper limitation; it can be seen in [8]. Instead, we sum-
marize the predictor in the Table 1. Symbols used in the
predictor are also appeared in Table 1.
To obtain the order-update recursive formulation for the
CM (N), it is required to consider two different order-update
recursions, the forward and the backward order-update re-
cursions. We start with the derivation of the backward order-
update recursion. The M -th order error vector es

M(k) can
be updated to the M + 1-th order error vector

es
M+1(k) = d(k − �M

2
�) − CT

M+1(k)xM+1(k).

When the correlation matrix RM+1(N) is multiplied by
[CT

M (N) 0], this gives the following equation

RM+1(N)
[
CM (N)

0

]
=

[
rM (N)

HbT
M (N)rM (n)

]
,

and it can be written

RM+1(N)(CM+1(N) −
[
CM (N)

0

]
) =

[
0

Kb
M (N)

]
, (5)

where

Kb
M (N) =

N∑
k=M−1

x(k − M)dT(k − �M
2
�)

− HbT
M (N)rM (N). (6)

From the (5) we can obtain the backward order-update re-
cursion equation of the smoother coefficient matrix as

CM+1(N) =
[
CM (N)

0

]
+ BM (N)E−b

M (N)Kb
M (N),

which can be written with the priori smoother error vector
αs

M(N) as

αs
M+1(N) = αs

M(N)−KbT
M (N−1)E−bT

M (N−1)αb
M(N),

where

αs
M(N) = d(N − �M

2
�) − CT

M(N − 1)xM(N).

The M -th order error vector es
M(k) can be also updated

to the (M + 1)-th error vector

es
M+1(k−1) = d(k−�M

2
�−1)−CT

M+1(k−1)xM+1(k),

where the forward order update equation is required. Simi-
lar to the backward order-update recursion, we can write

RM+1(N)(CM+1(N−1)−
[

0
CM (N − 1)

]
) =

[
Kf

M (N)
0

]
,

(7)
where

Kf
M (N) =

N∑
k=M−1

x(k)dT(k − �M
2
� − 1)

− HfT
M (N)rM (N − 1).

Then, the forward order-update recursion equation is writ-
ten as

CM+1(N−1) =
[

0
CM (N − 1)

]
+AM (N)E−f

M (N)Kf
M (N),

and we can rewrite this equation with the priori smoother
error vector as

αs
M+1(N − 1) = αs

M(N − 1) −
KfT

M (N − 1)E−fT
M (N − 1)αf

M(N).

Till now, we have obtained two order-update recursions for
the smoother coefficient CM (N). To complete the recur-
sions, time-update recursions for Kb

M (N) and Kf
M (N) have
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to be derived. From (6), we can write

Kb
M (N) =
N∑

k=M−1

{x(k − M) − HbT
M (N)xM(k)}dT(k − �M

2
�)

=
N∑

k=M−1

{x(k − M) −

HbT
M (N − 1)(x)M(k)}dT(k − �M

2
�) −

αb
M(N)gT(N)

N∑
k=M−1

xM(k)dT(k − �M
2
�)

= Kb
M (N − 1) + {x(N − M) − HbT

M (N − 1)xM(N)} ·
dT(N − �M

2
�) − αb

M(N)gT(N)rM(N)

= Kb
M (N − 1) + αb

M(N)es
M(N).

Similarly, we can write the time-update of Kf
M (N) as

Kf
M (N) = Kf

M (N − 1) + αf
M(N)es

M(N − 1).

The complete description for the MLSORLS is provided in
the Table 1. We shall see the numerical property of the ML-
SORLS through some simulation results in the next section.
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Fig. 1. Figure 1. System model

3. SIMULATION RESULTS

Simulations are performed by using Matlab 6.5. l-independent
Bernoulli sequences with values±1 are generated and trans-
mitted through the MIMO channel in which each channel
impulse response is defined by

hn =
{

1
2

[
1 + cos( 2π

Z (n − 2))
]
, n = 1, 2, 3

0 otherwise
(8)

where Z controls the amount of amplitude distortion, i.e.
the eignvalue spread χ(R). The inter-channel interference
is considered; main path gain values are set to 1 and the
other path gain values are set to 0.3. Additive white Gaus-
sian noise with variance 0.001 is introduced at the each
channel output, and Z is set to 3.5. To investigate effects of
the finite-precision arithmetic, we control a threshold value

in the inverse operation over the algorihtm. If singular val-
ues of a matrix are smaller than the threshold value, their
inverted values are considered as zero; similar approach has
been performed in [7]. To see these effects we compared
the MLSORLS with the delayed MLSORL filter, of which
desired vector is generally delayed the half filter order and
then fed into the filter. Figure 2 shows the simulation result
of the MLSORLS and the delayed MLSORL filter with no
threshold value, thus it is possible to compute exact inverse
matrix in the algorithms. As supposed, the two algorithms
have their nearly identical performances. However, when
the threshold is applied to their inverse operations, the ML-
SORL filter is affected and degraded. As the threshold value
increases, its performance gets much deteriorated as shown
in Figure 3 and 4. On the other hand, the MLSORLS keeps
its performance regardless of the threshold value except for
slightly slowed convergent behavior.

4. CONCLUSIONS

We have introduced the multi-channel least squares order
recursive lattice smoothing algorithm, which gives advan-
tages for implementing the MIMO communication systems.
In the simulation results, we have showed that it has better
numerical property than other adaptive algorithms under the
poor computational environment.
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Fig. 2. Figure 2. Learning curves for the MLSORLS and
the MLSORL filter with no threshold
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Table 1. The normalized LSORL Smoothing Algorithm

Parameter and variable descriptions:
αf

M, αb
M: the M -th order priori forward (backward)

prediction error vector
Γf

M ,Γb
M : the M -th order forward (backward)

reflection coefficient matrix
Ef

M , Eb
M : the M -th order forward (backward)

prediction error covariance matrix
MLSORL predictor:
αf

M(N) = αf
M−1(N) + ΓfT(N − 1)αb

M−1(N − 1)
αb

M(N) = αb
M−1(N − 1) + ΓbT(N − 1)αf

M−1(N)
∆M (N) = W∆M (N − 1)

+ ϕM−1(N − 1)αb
M−1(N − 1)αfT

M−1(N)
Γf

M (N) = −E−b
M−1(N − 1)∆M (N)

Γb
M (N) = −E−f

M−1(N − 1)∆T
M (N)

Ef
M (N) = WEf

M (N − 1) + ϕM (N − 1)αf
M(N)αfT

M(N)
Eb

M (N) = WEb
M (N − 1) + ϕM (N)αb

M(N)αbT
M (N)

ϕM+1(N) = ϕM (N) − |ϕM (N)|2αbT
M (N)E−bT

M (N)αb
M(N)

MLSORLS:
αs

M+1(N) = αs
M(N) − KbT

M (N − 1)E−bT
M (N − 1)αb

M(N)
Kb

M (N) = Kb
M (N − 1) + αb

M(N)es
M(N)

αs
M+1(N − 1) = αs

M(N − 1)−
KfT

M (N − 1)E−fT
M (N − 1)αf

M(N)
Kf

M (N) = Kf
M (N − 1) + αf

M(N)es
M(N − 1)
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Fig. 3. Learning curves for the MLSORLS and the ML-
SORL filter with threshold 2
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Fig. 4. Learning curves for the MLSORLS and the ML-
SORL filter with threshold 5
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