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ABSTRACT

Cooperative transmission schemes in multi-hop networks have
the advantage of energy efficiency and increased network cover-
age. Realizing these advantages, however, require a compatible
physical layer. In this paper we consider the detection of a signal
transmitted by multiple cooperative nodes. Exploiting the struc-
ture of the network, we formulate the problem, and propose a gen-
eralized likelihood ratio detector. We compare the performance
of the proposed detector with two others: estimator-correlator and
a genie aided detector (provides a performance benchmark). The
genie aided detector assumes the knowledge of certain network
parameters which may be unknown during reception. Simula-
tions show that the proposed detector performs reasonably close
to the genie aided one, while being considerably better than the
estimator-correlator.

1. INTRODUCTION

We consider a network with cooperative broadcasting. That is, an
initiator (source) starts a transmission session, and the nodes who
hear the packet decode and retransmit. The retransmissions are
done simultaneously, even though they may not be symbol syn-
chronized. The retransmissions continue until every node who can
hear the others retransmits at least once.

This cooperation mechanism, and others, have received con-
siderable attention recently [1]-[4]. Node cooperation has been
shown to be beneficial for reaching far distances (an application
potentially important in sensor networks) [2], improving the en-
ergy efficiency [3], and increasing network coverage [4].

Advantages of cooperation, however, can not be realized, un-
less the network is supported by feasible and reliable physical layer
functions. The nodes who would like to help out other nodes’
transmissions always face the problem of whether they should con-
tribute, and if so, at what time. This decision is critical, because if a
node prematurely decides to relay a poorly received signal, it may
retransmit erroneously decoded symbols. At the other extreme, if
the nodes behave too conservatively, then fewer nodes transmit si-
multaneously and this decreases the average signal-to-noise ratio
(SNR) of the combined signal. Also, the signal propagates using
smaller hops, which results in increased delay.

In this work, we address the signal acquisition problem in a
cooperative network. We use the term “acquisition” to describe
the detection of existence and timing of a known signal in noise.
The detection has a direct effect on relaying decisions, since the
nodes relay only if they detect a signal. The problem of signal
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acquisition has been extensively studied for point-to-point links
[5]. What makes the cooperative transmission different is that si-
multaneous (but, asynchronous) transmission of the same message
creates a special inter-symbol interference (ISI) in the received sig-
nal. In this work, we design a detector that particularly exploits the
structure of this special form of multipath, resulting from the asyn-
chronous retransmission of multiple relays.

In the following sections, first we explain our broadcasting
technique and give the expressions for the received and transmit-
ted signals, and then we derive an equivalent discrete-time channel
model. The channel statistics are found, and the detection problem
is formulated. In Section 5, we introduce the generalized maxi-
mum likelihood ratio detector. In Section 6, we discuss two other
detectors and provide simulation results.

2. TRANSMISSION POLICY

Transmission session is initiated by a single source. Each packet
contains three parts: (i) Guard Period (ii) Training Period (iii)
Data. The training portion of the packet is used for signal acquisi-
tion and channel estimation. The nodes that can detect the signal
from the source are called first level nodes. After detecting the
presence of the signal, first level nodes decode and re-transmit the
same packet. That is, the nodes in the nth level can not detect the
presence of the signal until after the nodes in the (n − 1)th level
transmit. The guard period is included at the beginning of each
packet in order to prevent any interference between the nodes in
the same level.

The received signal at a node can be considered as multiple
replicas of the same signal, so that the channel can be modelled as
a multi-path channel. We assume the channel is time varying from
packet to packet, but constant during a single packet transmission.
The time varying nature of the channel is due to many reasons, one
of which is the frequency differences between the oscillators of
each node. This, in first approximation introduces a time-varying
phase shift in the received signal at each node.

In the rest of the paper, we’ll deal with one-shot transmissions,
and we’ll assume that the packet contains only training since in
this paper we deal with signal acquisition only. We will also as-
sume that during the training sequence, the carrier offset effect is
negligible and can be modelled simply as a phase offset. The ba-
sic model developed in this work will be used in future papers to
handle the data detection.
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3. TRANSMITTED/RECEIVED SIGNAL MODELS

In our derivations, we analyze a network that contains a single
source and nodes which are distributed randomly in an area. Let
c[n] be the nth sample in the packet of length M . Let p(t) be the
pulse shape and θik be the phase shift between ith and kth node
due to frequency drifts. Let τk be the time instant that kth node
starts transmission and dik, αik are the distance and fading coeffi-
cient between ith and kth nodes, respectively. Also, the speed of
light is denoted by vc, and path-loss exponent is denoted by β. T
is the symbol interval.

The transmitted signal at the ith node is,

s(i)(t) =

M�
k=1

c[k]p(t − τi − kT ),

where we’ll refer to τi as the relaying time of ith node. The source
node is indexed by zero. After bandpass filtering, the received
signal at the ith node can be written as

r(i)(t) =
�
k∈Si

αikejθik

dβ
ik

M−1�
n=0

c[n]p(t−τk− dik

vc
−nT )+w(i)(t),

where w(i)(t) is the additive white Gaussian noise (AWGN), and
Si is the index set of nodes whose transmissions the ith node can
hear. After sampling at the Nyquist rate r(i)[n] = r(i)(nT ),

r(i)[n] =

M−1�
m=0

c[m]
�
k∈Si

1

dβ
ik

αikejθikp
(i)
k [n−m]+w(i)[n] (1)

where

p
(i)
k [n − m] := p(nT − τk − dik

vc
− mT ) (2)

Let’s define channel coefficients as,

g(i)[n] =
�
k∈Si

αikejθik

dβ
ik

p(nT − τk − dik

vc
). (3)

Then the received signal is,

r(i)[n] = g(i)[n] ∗ c[n] + w(i)[n].

From now on, we’ll include ejθik inside fading coefficients: α̃ik =
αikejθik .

4. CHANNEL STATISTICS

Since we consider a network of nodes that are randomly distributed,
τk, and dik are considered as random parameters that depend on
the network topology. We assume that α̃ik ’s are independent of
each other and independent of τk, dik. Also we assume that α̃ik ’s
are complex circular Gaussian zero mean and unit variance.

Using Eqn. 3, the mean of the nth channel coefficient is,

E{g(i)[n]} =
�
k∈Si

E{α̃ik}E{p(nT − τk − dik
vc

)

dβ
ik

} = 0

Using Eqn. 2, the covariance between lth1 and lth2 channel coeffi-
cients can be found as,

R(i)
gg [l1, l2] = E{gi[l1]g

∗
i [l2]}

=
�

k1∈Si

�
k2∈Si

E{ α̃ik1 α̃∗
ik2

dβ
ik1

dβ
ik2

p
(i)
k1

[l1]p
(i)
k2

[l2]}

Since α̃ik’s are independent, zero mean and unit variance,

R(i)
gg [l1, l2] =

�
k∈Si

E{ 1

d2β
ik

p
(i)
k [l1]p

(i)
k [l2]}

By simple manipulation, we can obtain,

p
(i)
k [l1]p

(i)
k [l2] =

�
δ(t − τk − dik

c
)p(l1T − t)p(l2T − t)dt.

This trick lets us combine the random parameters all together, i.e.

ϕ(i)(t) := E{ 1

d2β
ik

δ(t − τk − dik

vc
)}. (4)

Then the covariance is,

R(i)
gg [l1, l2] =

�
k∈Si

�
ϕ(i)(t)p(l1T − t)p(l2T − t)dt. (5)

When we consider the detection of the signal in the form Eqn.
1, we face a chicken-egg dilemma. The received signal at the ith

node depends on the relaying times, τk, of nodes in Si, and the
relaying times of these nodes depend on the detection method we
choose. Hence, in principle we can not provide a model for the
received signal unless we specify the detection policy but, at the
same we can not derive an optimal detection policy unless we
have a model for the receiver signal. To overcome this problem,
we broke the coupling between the relaying times and detection
method by assuming an arbitrary but reasonable statistical model
for the relaying times. We assume that the processing times are
large compared to the propagation times.

Let qi be the level that ith node is located. In the following,
we assume the relaying times (τk) are uniform with mean µqk ,
that depends on the level kth node is located, and variance σ2, a
constant. This assumption is valid when the propagation delays
are insignificant compared to the processing time. Let � =

√
3σ.

Note that we assume µqk − � is large enough that the causality
is maintained in the system, that’s a node can’t transmit before
receiving the packet. The probability density function (PDF) for
τk is,

f(τk; µqk) =

�
1

2� µqk −� ≤ τk ≤ µqk + �
0 otherwise

We assume that the received signal at the ith node is due to
the transmitted signal from the nodes that are located in the qth

i−1

level. Then given that the ith node is located in the qth
i level, τk,

and dik are independent. Assuming τk >> dik
vc

, Eqn. 4 reduces
to,

ϕ(t)(i) = E{ 1

d2β
ik

}E{δ(t − τk)}

=

�
1

2�E{ 1

d
2β
ik

} |t − µqi | ≤ �
0 otherwise
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And Eqn. 5 reduces to

R(i)
gg [l1, l2] =

1

2�
�
k∈Si

E{ 1

d2β
ik

}Ψ(i)(l1, l2; µqi ,�)

where

Ψ(i)(l1, l2; µqi ,�) =

� µqi
+�

µqi
−�

p(l1T − t)p(l2T − t)dt

=

� �

−�
p(l1T − t − µqi)p(l2T − t − µqi)dt.

Assume that µqi is a multiple of T (sampling interval). Define

Ψ(l1, l2;�) =

� �

−�
p(l1T − t)p(l2T − t)dt. (6)

Then Ψ(i)(l1, l2; µqi ,�) = Ψ(l1 − µqi
T

, l2 − µqi
T

;�) and,

R(i)
gg [l1, l2] =

�
k∈Si

1

2�E{ 1

d2β
ik

}Ψ(l1 − µqi

T
, l2 − µqi

T
;�).

Also define,
h(i)[l] = g(i)[l + Di],

where Di :=
µqi
T

is the delay parameter for the ith node. Then,

R
(i)
hh[l1, l2] =

�
k∈Si

1

2�E{ 1

d2β
ik

}Ψ(l1, l2;�) = κiΨ(l1, l2;�)

where

κi =
�
k∈Si

1

2�E{ 1

d2β
ik

}. (7)

If we assume nodes’ locations are identically distributed then
κi = |Si|

2� E{ 1

d
2β
ik

}, where |Si| is the cardinality of set Si.

Note that Ψ(l1, l2;�) does not depend on node index i since
� is assumed to be constant throughout the network. As we will
see next, this remarkable property is helpful in setting up a sim-
plified structure for our detector. In the following sections, we’ll
assume channel coefficients of the ith node are circular complex
Gaussian with zero mean, and covariance Σh(i) = κiΣ. Indeed,
when we consider large, dense networks, this is a valid assump-
tion due to central limit theorem, since the number of replicas of
the signal that a node receives from its neighbors are large. Refer
to Fig. 1 for an example.

5. PROPOSED SIGNAL ACQUISITION METHOD

Note that in this section we drop superscripts that show depen-
dence on the node. And CN (0, Σ) is used to denote circular com-
plex Gaussian random vectors, with zero mean and covariance Σ.
We assume that the channel length is known at the node which can
be calculated by using Eqn. 6.

The detection method operates with a sliding window of length
N := M + L − 1 (M is the length of training sequence, L is the
channel length) on the received signal, i.e. the detection is per-
formed on a block of N samples at a time. The received signal
is

r[n] = g[n] ∗ c[n] + w[n],

where g[n] = h[n − D], and D is the time-delay of the sequence.
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Fig. 1. Comparison of PDF of x (�{h[0]}) with the normal den-
sity having the same mean and variance as x. Network consists of
10 nodes uniformly distributed in a circle of radius 10m with the
distance of destination node to the source node being 20m.

Let rk be the received signal at the kth window, and h =
[h(0) . . . h(L − 1)]T . Then we express rk as,

rk = C(Dk)h + w

where C(Dk) is a N × L matrix such that first Dk rows are zero.
Let Cij be the (i, j)th of C(Dk), then

Cij(Dk) =

�
c(i − j − Dk) 0 ≤ i − j − Dk ≤ M − 1
0 otherwise

Notice that since we work with a window of data, Dk ranges
from 1 − N to N . Dk = 0 corresponds to the case where the re-
ceived signal in the window contains the entire training sequence,
and Dk = N corresponds to the case where the received signal is
noise only. Negative Dk values corresponds to the case where part
of the packet lies in the previous window. Assume that signal is
detected at the Kth window, then

D = K − 1 + DK .

Let’s define our hypotheses as follows,

H0 : rk = w

H1 : rk = C(Dk)h + w, Dk ∈ {1 − N, . . . , N − 1}
where w ∼ CN (0, σ2

0I) and h ∼ CN (0, κΣ). The density func-
tion of the received signal under hypothesis H1 given Dk = 	
(for 	 = 0 . . . N − 1) is,

p1(rk; Dk = 	, κ) =
1

πN |Σ1(	)|e
−rH

k Σ−1
1 (�)rk

where Σ1(	) = κC(	)ΣC(	)H + σ2
0I. And the density of rk

under H0 is,

p0(rk) =
1

πNσ2N
0

e

−rH
k rk

σ2
0 .

We use generalized likelihood ratio test (GLRT) [6] as the de-
tection method, and the likelihood ratio L(rk) is,

L(rk) = max
Dk,κ>0

L(rk, Dk, κ) = max
Dk,κ>0

p1(rk; Dk, κ)

p0(rk)
.
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For a given threshold, Th, the detector δ(rk) is defined as,

δ(rk) =

�
1 L(rk) ≥ Th
0 L(rk) < Th

Maximizing the likelihood ratio over Dk is just a search over
a discrete finite set; on the other hand maximizing over κ is a con-
tinuous optimization problem. We found upper and lower bounds
on κ and quantized the interval to do the search.

As a positive outcome of the proposed detector, we can obtain
the maximum likelihood estimate of κ, which gives some infor-
mation about the network; e.g., κ is proportional to the number
of neighboring nodes in the case of identically distributed nodes
(Eqn. 7).

6. SIMULATIONS

We deal with a single node receiving packets from N nodes uni-
formly distributed in a circular area of radius R. These nodes’
relaying times are uniformly distributed between 0 and 2�. The
pulse shape is rectangular of width T . The realizations of channel
coefficient are generated through Eqn. 3, and actual κ is calculated
from Eqn. 7. Uniformly generated delays, D < M + L − 1, are
introduced and packets are generated under each hypothesis. In
this section we compare the performance of the proposed detector
(Eqn. 8) with the following methods.

Genie aided detector: This detector knows what the actual
delay, Dact, and κact are.

δGenie(rk) =

�
1 p1(rk;Dact,κact)

p0(rk)
≥ Th

0 p1(rk;Dact,κact)
p0(rk)

< Th

Estimator-Correlator detector: This detector produces a least
squares estimate of the channel, and correlates the estimate with
the received signal (this is essentially a deterministic version of
the estimator-correlator in [6] Sec 5.3). Let C0 := C(Dk)|Dk=0.

δEstCorr(rk) =

�
1 T (rk) ≥ Th
0 T (rk) < Th

where T (rk) = rH
k C0[C

H
0 C0]

−1CH
0 rk.

The curves showing the probability of detection versus false
alarm for all methods are given in Fig. 2. The proposed detector’s
performance lies close to the genie aided detector, and is much bet-
ter than the estimator-correlator detector. As a second set-up, for
the same simulation parameters and D > M + L − 1, we present
the performance of sliding window by plotting the rate of detec-
tion versus estimated delay parameter (Fig. 3). When the thresh-
old is high, the detection is concentrated around the actual delay
as expected. Note that the detection is stopped once the signal is
detected. Hence for low threshold, the concentration of estimated
delay is around a value that is lower than the actual delay.

7. CONCLUSION

We formulated the signal detection problem in cooperative trans-
mission, derived the channel statistics and proposed a GLRT de-
tector. Then we compared the proposed detector with a genie
aided one, which provides performance benchmark, and with the
estimator-correlator. We plan to study the effect of detection on
overall network performance as our future work.
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Fig. 2. Network consists of 15 nodes uniformly distributed in
a circular area with radius, R = 20m. Simulation parame-
ters: � = 1, T = 1, κact = 5.2 × 10−6, M = 16, L = 3.
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Fig. 3. Rate of detection versus the estimated delay where actual
delay is 25 sec.
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