
ABSTRACT

Recently, the authors have proposed statistical prefilters for
MMSE and ZF receivers that minimize SER. In this paper, we give
a general derivation of their structure based on majorization the-
ory. For both receiver types it is shown that the optimal prefilter
essentially transmits on the strongest long-term eigenmodes of the
channel with proper power allocation. Moreover, simple closed-
form power allocation schemes are presented for Rayleigh and
Ricean fading environments. Interestingly, while the statistical
prefilters exhibit the same basic mathematical structure as their
short-term counterparts, they require only statistical information of
the correlation properties and the Ricean component of the chan-
nel. Monte-Carlo simulations show that the proposed filters can
achieve a considerable performance gain. Specifically, it is dem-
onstrated that they can completely counteract the SER degradation
due to a Ricean channel component.

1. INTRODUCTION

With the availability of short-term (ST) channel state information
(CSI) at the transmitter, it is well-known that the symbol error rate
(SER) of wireless MIMO systems can be reduced by adequate lin-
ear prefilters. Filter designs are available for zero-forcing (ZF) [1]
and minimum mean squared error (MMSE) [2][3][4] receivers.
However, in many cases it is impossible to acquire ST CSI at the
transmitter, e.g. with high user mobility or in frequency division
duplex (FDD) systems. Therefore, in [8][9] the authors have pro-
posed long-term (LT) statistical prefilters that are based on the cor-
relation properties of Rayleigh fading MIMO channels only. In
this paper, we extend these results by providing exact proofs of the
optimal prefilter structures based on majorization theory [5]. It is
shown that in both the ZF and MMSE case, the prefilter transmits
independent data streams along the strongest LT eigenmodes of
the channel with a suitable power allocation (PA). On the other
hand, the optimum PA strategy in general is a complicated func-
tion of the prevailing fading statistics of the wireless channel and
becomes hardly analytically tractable. One possible remedy to this
problem is a costly numerical Monte-Carlo optimization. We
avoid this by introducing low-complexity closed-form power allo-
cation policies for Rayleigh fading environments based on bound-
ing techniques, which are also effectively deployed after simple
manipulations in the presence of Ricean fading. Interestingly,

there is a duality between the prefilter structures in the ST and LT
case, i.e. it turns out that the LT prefilters can be derived by simply
replacing the ST eigenvectors and eigenvalues of the channel by
their LT equivalents. Monte-Carlo simulations demonstrate the
effectiveness of the proposed prefilter schemes and a significant
improvement in the symbol error rate (SER).

2. SIGNAL AND CHANNEL MODEL

We consider a flat fading MIMO link modeled by

, (1)
where s is the L×1 TX symbol vector, F is a MTX×L linear matrix
transmit prefilter, H is the MRX×MTX MIMO channel matrix with
correlated fading elements, n is the MRX×1 noise vector, and y is
the MRX×1 receive vector. By MRX≥L we denote the number of
RX antennas, MTX is the number of TX antennas and L is the
number of independent subchannels. Note that L can in general be
smaller than the number of transmit antennas. In the following we
assume additive Gaussian noise with covariance matrix Rnn.
Using a widely accepted channel model, the Rayleigh fading
MIMO channel with TX correlation can be described by the matrix
product

, (2)

where Hw is a MRX×MTX matrix of complex i.i.d. Gaussian vari-
ables of unity variance and

, (3)

whereas we assume without loss of generality that B is Hermitian
and RTX is the long-term stable (normalized) transmit correlation
matrix, respectively. Ex denotes expectation with respect to x.
In the presence of a deterministic component, i.e. Ricean fading,
the channel model in (2) can be extended to (see e.g. [6])

, (4)

where M is the non-fading component, normalized such that
, and K is the Ricean factor ranging from

0 (purely stochastic) to infinity (purely deterministic).

3. ZF STATISTICAL PREFILTER DESIGN

Using majorization theory, we calculate a general solution of the
prefilter optimization problem for Rayleigh fading channels given
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in [9]. Via a simple moment fit the result is then extended to
Ricean fading.

3.1. Rayleigh fading

By considering the Chernoff bound (valid for the high SNR
region)  on the symbol error rate (SER), in [9] the authors have
derived that the SER optimizing linear prefilter matrix F for a ZF
receiver with transmit correlated Rayleigh fading channel and
additive white Gaussian noise (AWGN) can be obtained by solv-
ing the following constrained optimization problem

(5)

with the diversity parameter N=MRX-L+1 and transmit power
restriction ρ. Using a direct differentiation approach, in [9] a gen-
eral solution for arbitrary system parameters could not be found.
This gap is now closed by

Theorem 1. The optimum SER minimizing prefilter with ZF
receiver in the sense of (5) is given by

, (6)

where DL is a L×L discrete Fourier transform (DFT) matrix,  is

a matrix of the eigenvectors corresponding to the L strongest

eigenvalues of the eigenvalue decomposition (EVD) in

, (7)

where the matrix  contains the L largest eigenvalues in increas-

ing order. The diagonal power allocation matrix Φ reads

. (8)

Proof: In this paper, we use majorization theory for solving prob-

lem (5). To this end, we first introduce the auxiliary L×L matrix

(9)

with the vector of real diagonal elements

. (10)

Without loss of generality, assume that the elements of x are

arranged in decreasing order. Now we can reformulate the prob-

lem in (5) as

. (11)

Note that  is a positive definite matrix, i.e. all minors

are positive definite and thus the diagonal of the inverse is posi-

tive. Now consider the objective function in (11). Obviously, it is

symmetric in its arguments. Furthermore, it is convex in each of

its arguments. It follows from Theorem 4 in the appendix that it is

a Schur-convex function. Using Theorem 3, the objective func-

tion is minimized for equal elements in x. From Theorem 6, we

can find a real symmetric matrix Q such that QHXQ has identical

diagonal elements, i.e. we use prefilter matrix

. (12)

Note that this does not change the transmit power. Another

straightforward choice for the matrix Q is a DFT matrix of size

L×L. Using the transmit filter structure in (12), we find

. (13)

Obviously, with (13) the optimization problem in (5) can be

reduced to (minimum trace minimizes each diagonal element)

. (14)

Now (14) is a Schur-concave function of the diagonal elements of

. Applying Theorem 5 we can choose F by proper

application of a rotation matrix such that  is diago-

nal with elements in decreasing order or equivalently such that the

diagonal elements of  are in increasing order. The diag-

onalizing rotation matrix consists of L eigenvectors of RTX.

It can then be shown by Lemma 2 that we have to chose the eigen-

vectors corresponding to the largest L eigenvalues of RTX, such

that the optimum F has the structure in (6). Constrained Lagrange

optimization of the problem in (14) then leads to (see also [9]) the

power allocation matrix in (8). QED.

3.2. Ricean fading
The SER performance analysis that led to the optimum prefilter

design problem in (5) becomes extremely complicated in the case

of Ricean fading and to the author’s best knowledge there are no

solutions available in literature. Therefore, we propose an approx-

imation of the Ricean fading statistics (essentially, we approxi-

mate a non-central Wishart distribution via a central Wishart

distribution [7]) by a moment fit

, (15)

where  is the Rayleigh fading channel matrix approximating

the Ricean statistics. Calculating the expected values in (15) and

equating results in an approximating transmit covariance of 

. (16)

Using the approximation in (16), for the prefilter design in Ricean

fading we can just use equations (6)(7)(8), with RTX replaced by

. We note that the proposed scheme is applicable to arbitrary

MIMO channel statistics.

4. MMSE STATISTICAL PREFILTER DESIGN

4.1. Rayleigh fading

The resulting average mean squared error (MSE) summed over all

subchannels with the signal and channel models in (1) and (2) and

MMSE receiver reads [8]

. (17)

Now we have the optimization problem for the prefilter (such that

it minimizes the average MSE)

. (18)

The solution is given in

Theorem 2. The optimum prefilter with MMSE receiver in the

sense that it minimizes the average MSE and forces equal SER on

each subchannel in a Rayleigh fading environment is given by

, (19)
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with diagonal PA matrix Φ, L×L DFT matrix DL and the EVD in

(7).

Proof: Introducing the singular value decomposition (SVD)

, (20)

where Y contains the left singular vectors, Z the right singular

vectors and D the singular values we get

(21)

with a MRX×L matrix of complex Gaussian i.i.d. entries .

Obviously, the average MSE is a function of the singular values in

D only. Now noting that left multiplication of F with unitary Z
does not change the objective function and the constraint in (18),

we can introduce

(22)

and solve problem (18) with F being replaced by . We can arbi-

trarily chose the unitary matrix Z. Here, we let ZH=DL be a DFT

matrix for minimizing the overall SER [3]. We find from (20) and

(22)

. (23)

Finally, we can apply Lemma 2 and arrive at (19). QED.
Theorem 2 describes only the general structure of the prefilter and

we still have to define the PA matrix Φ. To this end, let

.(24)

We note that in (24) obviously  defined in (7).

Via a bound on the average MSE and Lagrange optimization, in

[8] a low complexity long-term power allocation (PA) policy was

proposed with

, (25)

where the constant µ is chosen according to the power constraint,

resulting in

. (26)

We have to assure φl>0 for all l, which is indicated by the plus

sign in (25). This means that in certain situations the weakest LT

eigenmodes are not used for transmission by setting the corre-

sponding PA coefficient to 0.

4.2. Ricean fading

Similar to (24), we now calculate for the Ricean channel

.(27)

With the corresponding EVD of (27), we can use the prefilter

structure in (19) together with the power allocation (25) also for a

Ricean fading environment. We note that the resulting prefilter is

optimum (i.e. it is no approximation) in the sense that it mini-

mizes the bound on the average MSE given in [8] based on

Jensen’s inequality.

5. SIMULATION RESULTS

 In the following simulations, we assume a uniform linear array

with 0.5 lambda element spacing at the transmitter and receiver.

In the presence of transmit fading correlation, for the Rayleigh

fading scattering component of the channel we consider the case

of one main direction of departure (DOD) at 20 degrees with

respect to the array perpendicular, and a Laplacian power distri-

bution with 10 degrees angular spread (AS). The transmit correla-

tion matrix is determined according to these assumptions via

Monte-Carlo simulation, while uncorrelated fading is assumed at

the receiver.

On the other hand, we consider the case of a rank-1 deterministic

channel component M corresponding to a single line-of-sight

(LOS) component, whereas we assume a DOD at the transmitter

and a DOA at the receiver of 45 degrees.

We study an AWGN (i.e. no colored interference) scenario with

the SNR given by

, (28)

where Eb is the transmit energy per information bit. Throughout

our simulations we normalize the total transmitted energy to

ρ=MTX and assume QPSK modulation.

In Fig. 1 we show BER results of a ZF receiver in a uncorrelated

Ricean fading channel with K=1 (equal split between determinis-

tic and scattering component) for a 4×4 system with L=2 indepen-

dent data streams. For reference we have also depicted results for

an i.i.d. Rayleigh fading channel (M=0) with blind transmission

and results for a prefilter algorithm based on ST CSI [1].

Fig. 1: ZF prefiltering (L=2, MRX=MTX=4, uncorrelated, K=1)

A degradation of the BER performance with non-adaptive trans-

mitter owing to the Ricean component can be observed. Due to

the rank-1 nature of the deterministic component, on average

essentially an increased noise amplification takes place in the ZF

receiver in the channel matrix inversion process. However, appli-

cation of the novel LT CSI transmit prefilter can obviously over-

come these impairments and interestingly the curves for blind

transmission in the Rayleigh case and with LT prefilter in the

Ricean case agree.

Similar results hold for MMSE receiver simulations for a 6×6 sys-

tem with L=4 independent subchannels given in Fig. 2. We again

consider a Ricean channel with K=1, however, now the scattering

component exhibits transmit correlation according to an AS of 10

degrees. This results in a stronger degradation of the curve with
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blind transmission in a Ricean correlated channel compared to
blind transmission in an i.i.d. Rayleigh fading channel with M=0
(note that the 4 independent data streams are transmitted on the
outer 4 transmit antennas). Obviously, via the LT CSI based pre-
filter we can successfully exploit the knowledge of the channel
statistics and one can see a considerable performance improve-
ment.

Fig. 2: MMSE prefiltering (L=4, MRX=MTX=6, 10° AS, K=1)

An important observation is that in the presence of strong channel

correlation, it can be seen from Fig. 2 that statistical CSI becomes

more valuable and the difference to the ST CSI based scheme

becomes less significant.

6. APPENDIX

Definition 1. For any , let

(29)

denote the elements of x in decreasing order (also termed order

statistics).

Definition 2. [5, definition 1.A.1] Let . Vector x is

majorized by vector y (y majorizes x) if

(30)

and is represented by x�y.

Definition 3. [5, definition 3.A.1] A real-valued function φ
defined on a set  is said to be Schur-convex

x�y on A ⇒ φ(x)≤φ(y) (31)

Similarly, φ is said to be Schur-concave on A if

x�y on A ⇒ φ(x)≥φ(y) (32)

Theorem 3. [5, page 7] Let  and let 1n be a n×1 vector of

all ones. Then with

(33)

 it follows κ·1n�x.

Theorem 4. [5, proposition 3.C.2] If φ is symmetric (i.e. symmet-

ric in its arguments) and convex, then φ is Schur-convex.

Theorem 5. [5, theorem 9.B.1] Let R be an n×n Hermitian matrix

with diagonal elements denoted by the vector d and eigenvalues

denoted by the vector λ, then

d�λ. (34)

Theorem 6. [5, theorem 9.B.2] If h�λ on Rn, then there exists a

real symmetric matrix H with diagonal elements h and character-

istic roots λ.
Lemma 1. [5, lemma 9.H.1.h] If U and V are n×n positive sem-

idefinite Hermitian matrices, then

, (35)

where the eigenvalues are sorted in decreasing order.

Lemma 2. [4, lemma 12 in appendix] Let R be a full rank positive

semidefinite Hermitian matrix with eigenvalue decomposition

, (36)

where the matrix  contains the L largest eigenvalues in increas-

ing order and  the corresponding eigenvectors. Given a MTX×L

(MTX>L) matrix B such that BHRB is diagonal with diagonal ele-

ments in increasing order, it is always possible to find a matrix 

of the form  with diagonal matrix Σ, such that it satisfies

 with .
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