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ABSTRACT

This paper proposes a new decision feedback decoding scheme
for Alamouti-based space-time block coding (STBC) transmission
over time-selective fading channels. In wireless channels, time-
selective fading effects arise mainly due to Doppler shift and car-
rier frequency offset. Modelling the time-selective fading chan-
nels as the first-order Gauss-Markov processes, we use recursive
algorithms such as Kalman filtering, LMS and RLS algorithms for
channel tracking. The proposed scheme consists of the symbol
decoding stage and channel tracking algorithms. Computer simu-
lations confirm that the proposed scheme shows the better perfor-
mance and robustness to time-selectivity.

1. INTRODUCTION

Alamouti discovered a remarkable space-time block coding (STBC)
scheme for transmission with two transmit antennas achieves full
diversity gains using a linear maximum-likelihood (ML) decoder
[1]. Alamouti’s STBC has been adopted in several wireless stan-
dards such as IS-136, WCDMA, and CDMA-2000. Most STC
schemes rely on accurate channel estimation, which may require
the insertion of many pilot symbols when the channels are highly
time-varying. While differential STC (DSTC) schemes have been
developed for slowly time-varying channels [2]. Moreover, dou-
ble differential STC (DDSTC) offers a simple and robust means
of handling channel time-selectivity but loses 6dB in performance
[3].

Most existing STC schemes have been developed for flat fad-
ing channels. Different from [4], we consider here more realistic
time-selective but frequency-flat fading channels. In wireless mo-
bile communications, time selectivity is mainly caused by Doppler
shifts and carrier frequency offsets, which are jointly independent.
Information theoretic results have been shown that the first-order
Gauss-Markov random processes provides a accurate model for
time-selective fading channels, and, therefore, this channel mod-
els will be adopted in this paper. The problem of channel tracking
for STBC was also investigated in [4].

In this paper, we investigate the impact of time-selective fad-
ing channels on the performance of the transmit-diversity scheme
proposed by Alamouti. We propose a new decision feedback de-
tection scheme for Alamouti-based STBC transmission over time-
selective fading channels. We model time-selective fading chan-
nels as the first-order Gauss-Markov processes. We then apply
recursive algorithms (LMS, RLS, Kalman filtering) to track the

channel variations and decode the transmitted symbols with diver-
sity gains. A detaied description of how to link the symbol decod-
ing stage with the channel tracking stage is also presented. Sim-
ulation results confirm that the proposed scheme shows the bet-
ter performance and robustness to time-selectivity. Most notations
are standard: vectors and matrices are boldface small and capital
letters, respectively; the matrix transpose and the Hermitian are
denoted by (·)T and (·)H , respectively; E[·] is the statistical ex-
pectation.

2. SYSTEM AND CHANNEL MODEL

Consider a wireless system equipped with two transmit antennas
and one receive antenna as shown in Fig. 1, where the information
symbols s(n) are transmitted using Alamouti’s space-time block
encoder. Different from previous work [1] where the channels are
assumed flat fading, we consider time-selective but frequency-flat
fading channels. Denote by hi(n), i = 1, 2, the time-selective
fading channel from the ith transmit antenna to the receive an-
tenna. At the receive antenna, the two successive received samples
y(2n) and y(2n + 1) are given by

y(2n)=h1(2n)s(2n)+h2(2n)s(2n + 1)+w(2n)

y(2n + 1)=−h1(2n + 1)s∗(2n + 1)+h2(2n + 1) ·
s∗(2n)+w(2n + 1) (1)

where the additive noise w(n) is complex Gaussian distributed
with zero-mean and variance σ2

w/2 per dimension. We assume
that data, channels, and noise are jointly independent. Among var-
ious channel model, the information theoretic results in [5] have
shown that the first-order Gauss-Markov process provides a accu-
rate model for time-selective fading channels and, therefore, will
be adopted henceforth. The dynamics of the channel state hi(n)
are modeled by

hi(n) = αhi(n − 1) + vi(n) (2)

where the vi(n) is the white complex Gaussian with zero-mean
and covariance σ2

v/2 per dimension and is statistically indepen-
dent of hi(n − 1). Parameter α ∈ [0, 1] is the fading correlation
coefficient that characterizes the degree of time variations; small
α models fast fading and large α corresponds to slow fading. The
first-order Gauss-Morkov model is parameterized by the fading
correlation coefficient α, which depends on the channel Doppler
spread, and can be accurately obtained in [5]. In wireless mo-
bile communications, channel time-varying characteristics arise
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Fig. 1. Space-time block coded transmission diagram.

mainly due to Doppler shifts arising from relative motion between
the transmitter and the receiver, and the carrier frequency offsets
due to the transmitter-receiver oscillators’ mismatch. Denote by
fo the carrier frequency offset and by Ts the symbol duration. We
can factorize hi(n) into

hi(n) = h̄i(n)ej2πfoTsn. (3)

where h̄i(n) and ej2πfoTsn account for the Doppler and the car-
rier frequency offset effects, respectively. Assume that hi(n) is
complex Gaussian distributed with zero-mean and unit-variance,
we know that

σ2
v = 1 − |α|2, α = E[hi(n)h∗

i (n − 1)]. (4)

According to the Jakes’ model [6], time-varying channel hi(n) is
zero-mean Complex Gaussian process, and has time-autocorrelation
properties governed by the Doppler rate fdTs as in

E[h̄i(n)h̄∗
i (n − 1)] = J0(2πfdTs) (5)

where J0(·) is the zeroth-order Bessel function of the first kind
and fd denotes the maximum Doppler shift. Recalling (4), the α
is related to fd, Ts and fo as following

α = J0(2πfdTs)e
j2πfoTs . (6)

3. PROPOSED DECISION FEEDBACK DETECTOR AND
CHANNEL TRACKING ALGORITHMS

The receiver observations y(2n) and y(2n + 1) corresponding to
the two symbol periods are given by

y(n) = H(n)s(n) + w(n) (7)

where, y(n) = [y(2n) y∗(2n+1)]T ; s(n) = [s(2n) s(2n+1)]T ;
w(n) = [w(2n) w(2n + 1)]T ; and the channel matrix

H(n) =

[
h1(2n) h2(2n)

h∗
2(2n + 1) −h∗

1(2n + 1)

]
. (8)

Because of the white Gaussian noise, the joint maximum-likelihood
(ML) detector choose the pair of symbol s(n) to minimize

‖ y(n) − H(n)s(n) ‖2 . (9)

To decode s(n), the space-time block decoder is designed by form-
ing the two consecutive output sample vector, z(n) = [z(2n) z(2n+
1)]T , as

z(n) = HH(n)y(n). (10)

Based on the definition (8), it follows by

R(n) = HH(n)H(n) =

[
ρ1(n) ε(n)
ε∗(n) ρ2(n)

]
(11)

where, ρ1(n) = |h1(2n)|2 + |h2(2n + 1)|2, ρ2(n) = |h1(2n +
1)|2+|h1(2n)|2, and ε(n) = h∗

1(2n)h2(2n)−h∗
1(2n+1)h2(2n+

1). Using (11), we know that

z(n) =

[
ρ1(n) 0

0 ρ2(n)

]
s(n)

+

[
0 ε(n)

ε∗(n) 0

]
s(n) + HH(n)w(n). (12)

The first part in (12) contains the maximum ratio combined sig-
nals from the two transmit antennas whereas the second part con-
tains inter-symbol-interference (ISI) on the off-diagonal elements
caused by time-selective channels.

Bit-error-rate (BER) performance analysis of the detector (12)
is possible for a given constellation under perfect channel knowl-
edge. We first obtain from (12),

z(2n) = ρ1(n)s(2n)+ε(n)s(2n + 1)

+h∗
1(2n)w(2n)+h2(2n + 1)w∗(2n + 1). (13)

Treating the interference as noise and after some mathematical ma-
nipulation about h1(2n) and h2(2n + 1), we compute the instan-
taneous SNR γ(n) as following

γ(n) =
0.5ρ2

1(n)Es

[ρ1(n)σ2
v+{κ(n)−ρ1(n)}σ4

v]Es+ρ1(n)σ2
w

(14)

where Es denote the symbol energy of s(n) and κ(n) = |h1(2n)|2·
|h2(2n)|2. In deriving (14), we divided the transmit power by
two for each transmit antenna because each symbol is transmit-
ted twice. The derivation of (14) is given in Appendix. A similar
equation can be obtained for s(2n + 1). Supposing that QPSK
modulation is used, the BER Pb(n) can be expressed as following

Pb(n) = Q
(√

γ(n)
)

. (15)

where Q(x) is the Q-fuction defined as Q(x) = 1√
2

∫ ∞
x

e−t2/2dt.

We neglecting the fourth order term σ4
v (≈ 0). When Es � σ2

w

(high SNR), we observe from (14) that Pb(n) does not increase
with Es but approaches an error floor given by

Pb(n) = Q

(√
ρ1(n)

2σ2
v

)
. (16)

In time-selective fading channels, Alamouti-based decoding scheme
has an error floor caused by interference as shown in (12). In or-
der to remove this error floor, we do not model the interference in
(12) as noise, but treat it as ISI and propose the decision feedback
detector, to decode s(n) from y(n), at the cost of smaller receiver
complexity.

From (11), we know that R(n) is Hermitian, therefore, it has a
unique Cholesky factorization of the form R(n) = GH(n)G(n),
where G(n) is lower triangular with real diagonal element. With
H(n) defined by (8), we can verify easily that

G(n) =
1√

ρ2(n)

[
ρ0(n) 0
ε∗(n) ρ2(n)

]

where ρ0(n) = |h1(2n)h∗
1(2n+1)+h2(2n)h∗

2(2n+1)|. Multi-

plying both vectors in (9) by the unitary matrix
[
H(n)G−1(n)

]H
,
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we find that the ML detector can be equivalent choose s to mini-
mize

‖ x(n) − G(n)s(n) ‖2 . (17)

Substituting (7), we find that the output x(n) is related to s(n) by

x(n) = [H(n)G−1(n)]Hy(n) = G(n)s(n) + n(n) (18)

where the white Gaussian noise n(n) has the same statistics as
w(n). The decision feedback detector uses a decision about s(2n)
to help make a decision about s(2n + 1). Because the chan-
nel model G(n) is lower triangular, there is no interference from
s(2n + 1) to x(2n), and thus a suboptimal decision ŝ(2n) can be
found by quantizing x(2n) as following.

x(2n) =
ρ0(n)√
ρ2(n)

s(2n) + n(2n). (19)

Then, assuming this decision is correct, the contribution from s(2n)
in x(2n + 1) can be recreated and subtracted off, allowing the re-
ceiver to determine the decision ŝ(2n + 1) by quantizing the re-
sulting difference D as following

D = x(2n + 1) − ε∗(n)√
ρ2(n)

ŝ(2n)

=
√

ρ2(n)s(2n + 1) + n(2n + 1). (20)

Let us analyze the BER performance of the proposed decision
feedback detector. The BER is thus again of the form P1(n) =

Q(
√

γ1(n)) and P2(n) = Q(
√

γ2(n)) for QPSK modulation,
where γ1(n) and γ2(n) are the effective instantaneous SNR for
(20) and (21), respectively:

γ1(n) =
ρ2
0(n)Es

2ρ2(n)σ2
w

, γ2(n) =
ρ2(n)Es

2σ2
w

. (21)

Let us express the average BER of the proposed decision feedback
detector. Combining, we can obtain the average BER Pb(n) as
following

Pb(n) =
1

2

[
Q

(√
γ1(n)

)
+ Q

(√
γ2(n)

)]
. (22)

To attain the proposed decoding scheme, accurate estimates
of the channel must be available at the receiver. The estimated
channel at time n will be written in vector form as following

ĥ(n|n) = [ĥ1(n|n) ĥ2(n|n)]T (23)

where ĥ(n|m) is the predicted channel at time n based on the
observation at time m. Let us define the state vector h(n) =
[h1(n) h2(n)]T and rewrite (2) to arrive at the state equation as
following

h(n) = Ah(n − 1) + v(n) (24)

where A = diag(α, α) and v = [v1(n) v2(n)]T . At time n, the
received signal y(n) is given by

y(n) = s̄T (n)h(n) + w(n) (25)

where s̄T (n) = [s(n) s(n + 1)]T when n is even and s̄T (n) =
[−s∗(n + 1) s∗(n)]T when n is odd. Assuming that A is known
from a preceding training mode and assuming the vector of the
most recent available decision ŝ(n) to be equal to the true s(n).
In the training mode, the receiver knows the transmitted symbols,

whereas in the decision-directed mode, the decoded symbols re-
place the information symbol. We will focus on the decision-
directed mode and assume that initial channel estimates are avail-
able by using techniques developed in [7]. In the decision-directed
mode, the prediction of the channels may not be accurate. In this
case, we can use the previous estimates and tentative channel pre-
diction can be expressed as following

ĥ(2n|2n − 1) = αĥ(2n − 1|2n − 1)

ĥ(2n + 1|2n − 1) = α2ĥ(2n − 1|2n − 1) (26)

that are initialized by h(1|1), which is obtained during the training
mode.

The receiver can use the Kalman filter to track the channel
variations h(n). The algorithm may be summarized as following

ĥ(n|n − 1) = Aĥ(n − 1|n − 1)

M(n|n − 1) = AM(n − 1|n − 1)AT + Q

K(n) =
M(n|n − 1)s̄(n)

σ2
w + s̄(n)T M(n|n − 1)s̄(n)

ĥ(n|n) = ĥ(n|n − 1) + K(n)[y(n) − s̄T (n)ĥ(n|n − 1)]

M(n|n) = [I − K(n)s̄T (n)]M(n|n − 1) (27)

where the estimator of h(n) based on {y(n)}m
i=0 is ĥ(n|m), M(n|n−

1) is the one-step minimum prediction mean-square error (MSE)
at time n, and M(n|n) is the minimum MSE (MMSE) at time n.
K(n) is the Kalman gain. Moreover, we can use the well-known
adaptive algorithms for channel variation tracking. LMS and RLS
algorithms are summarized as following, respectively.

e(n) = y(n) − s̄T (n)ĥ(n|n − 1)

ĥ(n|n) = ĥ(n|n − 1) + µe(n)s̄(n) (28)

RLS algorithm is summarized as following

e(n) = y(n) − s̄T (n)ĥ(n|n − 1)

K(n) =
λ−1P(n − 1)s̄T (n)

1 + λ−1s̄T (n)P(n − 1)s̄(n)

P(n) = λ−1P(n−1)−λ−1K(n)s̄T (n)P(n−1)

ĥ(n|n) = ĥ(n|n − 1) + e(n)K(n). (29)

4. SIMULATION RESULTS

In all simulations, we use the same parameters as shown in [4] for
fair comparison with the scheme therein. We use (3) to generate
hi(n). The generation of h̄i(n) follows the Jakes model [6] with
the parameters fd and Ts corresponding to a carrier frequency of
1.9 GHz, a mobile speed of 250 km/h, and a transmission rate
of 144 kb/s. QPSK modulation is considered. We simulate the
performance of our proposed detection scheme using BER as per-
formance index which we average over 5000 channel and noise
realizations for each SNR point. Moreover, in order to avoid di-
vergence in recursive algorithms, similar to [4], we insert one pilot
symbol every 12 symbols which introduces 8% bandwidth effi-
ciency loss.

In order to show the importance of channel tracking in time-
selective fading channels, we test channel tracking algorithms for
channel variations, and compare the BER performane with and

II - 311

➡ ➡



10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Kalman Tracking

n

Real
Imag
true
track

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
RLS Tracking

n

Real
Imag
true
track

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
LMS Tracking

n

Real
Imag
true
track

Fig. 2. True and estimate of channel variations.

without channel tracking, when the carrier frequency offset fo =
1000 Hz. Fig. 2 shows the true channels and their corresponding
tracked values in the case of time-selective channels. We observe
that RLS algorithm gives good tracking results, LMS algorithm
can find the channel but is loosing the tracking. Moreover, it is
observed that Kalman filtering yields excellent tracking results.
Fig. 3 confirms that channel tracking improves the BER perfor-
mance. As compared to the performance when channels are per-
fectly known, the results in Fig. 3 implies that even small channel
tracking errors could induce performance loss, because channel
tracking errors cause ISI between the two transmit antennas for the
Alamouti-based decoding scheme. However, decision feedback
detection scheme shows the better performance than Alamouti-
based decoding scheme.
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Fig. 3. BER improvement with channel tracking for the deci-
sion feedback detection scheme (AL and DF denote the Alamouti-
based and our decision feedback detection scheme).

5. CONCLUSION

We proposed a new decision feedback detection scheme for Alam-
outi transmit diversity scheme in time-selective fading channels.
Modelling time-selective channels as the first-order Gauss-Markov
processes, several recursive algorithms have been employed to track
their time variations. It has been shown by simulations that good
channel tracking performance improves the BER performance and
our proposed detection scheme has better performance than the
Alamouti-based scheme.
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