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ABSTRACT

In wireless communications, it is often desirable to merge bit deci-
sions from multiple receivers to improve overall link performance.
It is well known that in order to optimally fuse bit decisions from a
network of receivers, precise knowledge of receiver bit error rates
(BERs) is needed. This information, however, is rarely available
in practice. In this work, we present an iterative procedure for
blindly estimating receivers BERs to enable near optimal blind fu-
sion of bit decisions in a multi-receiver network. We show that
the solution of the estimation problem is a structured eigenvalue
task and propose a modified power method procedure to perform
it. We prove that the desired solution is a stable point of the algo-
rithm and the algorithm is locally stable. Furthermore, we show
via simulations that the technique results in excellent performance
in nearly all practical operating scenarios.

1. INTRODUCTION

In wireless communications networks, one often wishes to merge
data from various receivers to improve overall link performance.
There are two well-known alternatives for doing this task: (1) com-
bine sufficient statistics from each receiver using standard signal
processing approaches, or (2) fuse raw bit decisions from each re-
ceiver into a final bit decision. Owing to its simplicity and utility
in communications applications, we focus on the latter approach
herein.

It is well known that in order to fuse bit decisions from mul-
tiple receivers, precise knowledge about the receiver BERSs is re-
quired [1]. This information, however, is generally unavailable to
us and moreover, in most wireless communications systems, this
information is dynamically changing. Hence, to be able to imple-
ment bit fusion in practical systems, a low complexity algorithm
with fast convergence is desired.

An algorithm was presented in [2] which blindly estimates the
BER associated with each individual link in a multi-receiver net-
work. Also, an empirical fusion algorithm was presented which
uses BER estimates to blindly fuse bit decisions from multiple
receivers. It was shown via simulations that the two completely
blind algorithms working in tandem outperformed the best receiver
(minimum BER receiver) in the network and the standard majority
rule receiver for as few as 500 bit observations.

Although the algorithms in [2] achieve near optimal perfor-
mance for reasonably small number of observations, the perfor-
mance of the estimation algorithm can suffer drastically when suf-
ficient observations are unavailable. This is mainly attributed to
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the fact that this algorithm utilizes only a subset of information
(statistics) available and discards the rest. This discarded informa-
tion can be critical specially when the observations are scarce.

In this work, we propose a new iterative algorithm that in-
telligently uses the set of statistics discarded in [2] to reduce the
number of observations needed in order to form reliable BER es-
timates and also to lower the variance in the estimates. The price
paid for using these extra statistics is that a closed form solution
to the above estimation problem is no longer possible and an it-
erative procedure needs to be formulated. However, this price is
worth paying in systems where fast convergence is desired. For
example, for the 10 Mbps Ethernet having a 1 km maximum length
specification, the minimum packet size is 200 bits. Similarly, the
G723.1 codec and LPC10 codec can have packet sizes less than
500 bits. Finally, ATM packets are also less than 500 bits in size.
In such systems, the algorithm in [2] would fail to give satisfactory
performance.

This paper is organized as follows: In Section 2, we formalize
the problem statement. In Section 3, we present a low complex-
ity iterative algorithm that blindly estimates the receiver BERs. In
Section 4, we analyze the local stability of the proposed iterative
algorithm. In Section 5, we compare the performance of the pro-
posed algorithm to that of algorithm in [2], and finally in Section
6, we conclude the paper.

2. PROBLEM STATEMENT

The problem setup shown in Fig. 1 depicts a network of N re-
ceivers where all receivers observe the same information through
independent channels. Herein, we assume the following: (1) the
receivers make independent bit decisions on their observations, (2)
each channel is binary symmetric, and (3) the transmitted bits have
equal a-priori probabilities.

Each receiver makes bit decisions based only on its observa-
tions and passes them onto a central processor called the fusion
receiver. The fusion receiver combines the bit estimates from the
individual receivers into one final bit decision according to a fusion
rule.

If the BER of the ' receiver is P, (), then the optimal fusion
rule can be expressed as

N N H

- P.(7) !
S 2b)In =2 > g
— 1— P.(7) Ijo

However, in practical systems, only the estimates of P.(¢) avail-
able and the optimal fusion rule cannot be implemented. For such
cases, the empirical fusion rule is obtained by simply replacing
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Fig. 1. Blind bit fusion setup.

P, (i) in the optimal fusion rule with its estimate P. ( ) and is given
as N 57N H
. P, !

> (- 2bi)1n7@\ 20

i=1 1-F (Z) Hop

Hence, a low complexity, fast converging algorithm for BER

estimation is needed in order to implement the empirical fusion

rule in practical systems.

3. THE MODIFIED POWER METHOD ALGORITHM

In this section, we present the modified power method procedure
to blindly estimate receiver BERs. Let M be the total number of
bits observed by each receiver and let p;; = 1 — P. (i) — P.(j) +
2P, (1) P.(j) be the probability that receiver 7 and receiver j make
the same decision on a received bit. Then, an estimate «;; of p;;
is simply the fraction out of the total of M times, the two receivers

make the same decision i.e.
M i
k=1%k . i = 17 2

IV L N;j=i+1,...,N

A5 =

where

1 ifin the k" bit observation, receiver i

i and receiver j make the same decision
0 ifin the k*" bit observation, receiver %
and receiver j make different decisions

Based on N such pairwise statistics a12, @13, ..., ¥1N , Q23,
the authors in [2] derive estimates of Pe(1), Pe(2),... , P.(N)
by solving N non-linear equations in N unknown P (%) values.
The set of N equations was derived by equating the N statistics,

a1z, 013, ..., 01N, (23 to their respective unbiased values as fol-
lows:
1—P.(1) = P(2) +2P.(1)P(2) =a12 (1.1
1—P(1l)— P.(3)+2P.(1)P.(3) =oa13 (1.2)
1—P(1l)— P.(N)+2P.(1)P.(N) =oaan (1.N-1)
1—P.(2) — P.(3) + 2P-(2)P-(3) =23 (1.N)

A closed-form solution to the above set of equations was pre-
sented. Furthermore, in [3] it was shown that the estimates derived

in [2] are the maximum likelihood estimates (MLEs) of the re-
ceiver BERs.

Though the estimation algorithm presented in [2] renders MLEs
of receiver BERs and was shown to be computationally inexpen-
sive, it does not utilize all available pairwise information. As is
easily verified, a total of N(IN — 1)/2 pairwise statistics, aj,
are available. By the data processing theorem, more accurate es-
timates are expected to result if we are able to intelligently utilize
all N(N —1)/2 pairwise statistics. Motivated by this concept, we
wish to solve the following set of N(N — 1)/2 equations in N

unknowns to yield estimates of Pe(1), P-(2),..., P-(N).
1— Pe(l) — Pe(2) + 2P.(1)P(2) = Q12
1—Pe(1) — Pe(3) + 2P (1)Pe(3) = aas
1-P.(1)— Pe(N)—l—ZP()P(N); aiN
1-— (2 Pe(?)) + 2P, (2) (3) 23
1—P.(2) — P.(4) + 2P.(2)P.(4) = Q24
1—P6(N—1)—PE(N)+2PE(N—1)PE(N):. QN_1IN

Let P be the column vector of receiver BERs defined as P =
[Pe(1), Pe(2),--- , P.(N)]" and let P = 1y — P where 1y
denotes an N long column vector of ones. It is easy to see from
above relationships that P is an eigenvector of the matrix PP,
corresponding to the eigenvalue ||P||?. Moreover, it can be shown
that || P||? is the only non-zero eigenvalue of the matrix PP .

Let L be N x N real symmetric matrix with eigenvalues \;,
i=1,2,...,N such that |[\1| > |A2| > |[An/|. Then given vo e R ,
the power method produces a sequence of vectors as follows [4]:

fori:=0,1,2...do
V; = LVZ'
Vit1 = Vi/||vi
end

II”

The sequence of vectors v; converges to the dominant eigenvector
of L if the initial vector vo has a component in the direction of
the dominant eigenvector and the rate of convergence is dictated
by |A2]/|A1]-

Based on the power method, P can be estimated as the dom-
inant eigenvector of the matrix PP’ . However, the matrix PP
is unavailable to us. To be able to use a power method based pro-
cedure, we approximate the matrix PP’ using the information
available to us.

Consider another matrix A constructed from the N (N —1)/2
statistics a;; as follows:

0 12 13 Q1N
a2 0 Q23 Q2N
13 Q23 0 asnN
Q1N QoN . . 0

Given infinite observations and hence, error free estimates «;;, the
matrix A can be decomposed as

A =PP” + PP’ — diag(PPT + PP") )
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where diag(-) denotes a diagonal matrix with the diagonal equal
to the diagonal of the argument matrix.

We use Eq. (2) to approximate PP’ for finite observations
and derive the power method based iterations to estimate P as fol-
lows:

Initialization:

Po = 11\]

Po=1y — Py

Iterations:

fori=0,12...do
= . = =T .

Piy1 = [A+diag(PiP] + PiP;) - PiPl| i
Pii1=1-P;y

end

It is easily verified that the desired solution is a stable point of
the algorithm i.e. if the iterations converge to the desired solution
(error-free value of P), the error in the subsequent iterations is
zero.

4. LOCAL STABILITY ANALYSIS OF THE PROPOSED
ALGORITHM

In the previous section, we presented the iterative procedure to
blindly estimate the BER of a set of networked receivers. In this
section, we analyze the local stability of the proposed algorithm.
To be able to do so, we assume that error-free values of o, are
available and that at a particular iteration, the error in the estimate
of P* is given by A = [A1, Ao, ..., AN]T. Also, let P* denote
the error-free value of P*. Based on the above definitions, it can
be shown that if |A;| < P*;/2, then in the next iteration, the error
in P, the estimate of P~ is given by (MA + ) where

1 . Ty ) S5
= e [4dzag(P P*T) — 2dzag(1NP*T)

—(P TPy + PP+ PP — P*lT] 3)

and ¢ involves terms which are at least quadratic in A and hence
can be ignored. Here I 5 denotes the identity matrix of size N X N.

To be able to show that the algorithm is locally stable, we need
to prove that all eigenvalues of M are less than one in magnitude.
We prove this result in two steps: we first show that the eigenvalues
of M are real, and we then show that the eigenvalues of the matrix
M + I lie between zero and two.

4.1. To show that the eigenvalues of M are real:

Let S = [ddiag(P*P*') — 2diag(1xP*" ) — (P*TP*)Iy +
PP+ P*P*T]. We wish to show that the eigenvalues of (S —

P*17) are real. If ) is an eigenvalue of (S — P*17), then we
must have det(S — My — P*17) = 0. It can be shown [5] that

det(S — My —P*17) = det(S — Ay)
{1 +1%(s - AIN)*P}

The above equation implies that either det(S — MIny) = 0, in
which case, A is an eigenvalue of a real symmetric matrix and
hence, is real or (1 + 1% (S — A\Ix)"*P) = 0. Using the fact that
if A is an eigenvalue of a matrix, then so is the complex conjugate
of ), it can be shown that (1 + 1% (S — M) "'P) = 0 implies

that the imaginary part of A is strictly zero for the above equality
to hold. Therefore, the eigenvalues of ||P*||*M and hence, those
of M are real.

4.2. To show that if the eigenvalues of M are real, then the
eigenvalues of M + Iy lie between zero and two:

Let
a = (P"—P)/|P7
M
= P/|P|P
D= Hp*l*nz [4diag(P"P*") — 2diag(1yP*")

—(P*TW)IN]

Then, the characteristic equation of the matrix (M + Iy ) can
be written as [5]

N aib; N
1+;d“‘—>\ lj[l(d“—A)ZO

where A is an eigenvalue of the matrix in consideration, a;, b; are
the i*" elements of the vectors a, b, respectively and d;; is the
it" diagonal element of the diagonal matrix D. It can be shown
that the above equation is not satisfied for any value of A less than
zero. Furthermore, it can be shown that ||M + Iy || < 2, which
implies that all the eigenvalues of (M + I ) are less than 2 in
magnitude.

The above two results together imply that the eigenvalues of
M are bounded between —1 and 1 and hence, the proposed algo-
rithm is locally stable.

5. PERFORMANCE COMPARISON OF THE PROPOSED
ITERATIVE ALGORITHM

We now compare the performance of the proposed iterative algo-
rithm to that of the algorithm proposed in [2]. In all the simulations
presented in the paper, the proposed iterative algorithm was run for
20 iterations.

In Fig. 2 we compare the performance of the two algorithms
for a network of 5 receivers having randomly chosen BERs of
[0.0185 0.0269 0.0335 0.0612 0.0740]. Fig. 2 shows the com-
parison of bias in the estimate of the BER of the best receiver and
the BER of the empirical fusion receiver for the two algorithms.
The advantage of harnessing extra information is obvious from the
plots in the figure. As is seen from the first subplot, the proposed
power method based algorithm has a lower bias for small number
of observations (less than 500 bits). It was observed via extensive
simulations that the difference in bias resulting from the two al-
gorithms is most prominent for the minimum BER receiver which
in turn effects the BER of empirical fusion most. For other re-
ceivers in the network, though the proposed approach resulted in
lower bias, the difference in performance reduces as the BER of
the receiver increases.

Also plotted in the figure is the BER of empirical fusion re-
ceiver based on the BER estimates from the two algorithms. As
can be seen in the figure, the proposed algorithm results in a much
better performance for small number of observations and matches
the performance of the optimal fusion receiver for modest number
of observations.
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Fig. 2. Performance of the proposed algorithm compared with that
of the algorithm in [2] based on (1) bias in estimate of BER of best
receiver and (2) BER of empirical fusion. The proposed algorithm
outperforms the one in [2].
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Fig. 3. Comparison of variance in the estimates rendered by the
algorithms in consideration for a network of three receivers with
BER values [0.0543 0.1866 0.2970].

Intuitively, it seems appealing that the variance in the estimates
rendered by the proposed iterative procedure would be less than
the variance in the estimates using the algorithm in [2]. However,
a more meaningful analysis of the variance was elusive. In the
absence of a theoretical result, we use simulations to compare the
variances of the two estimates. In Fig. 3, we plot the variance
in the estimates for the two algorithms for a bank of just three re-
ceivers with BER values [0.0543 0.1866 0.2970]. Interestingly, the
proposed approach results in lower variance in its estimates even
when the two approaches use the same set of information (both al-
gorithms in this case use a12, 13, aez). This result implies that
for small number of observations, the new approach gives more
consistent results compared to algorithm in [2], regardless of the
number of receivers connected in the network.

Finally, we compare the performance of the two algorithms as
the number of receivers in the network is increased and the number
of bit observations is held constant at just 100 bits. In Fig. (4) we
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Fig. 4. Performance of proposed algorithm as the number of re-
ceivers in the bank are increased.

chose an increasingly large network of receivers with the number
of receivers varying from 3 to 10 and each new receiver picked se-
quentially from the following set of BER values: [0.0200 0.0500
0.1300 0.1600 0.1700 0.2000 0.2500 0.2900 0.3400 0.3700]. In
the figure, we compare the performance of (1) the majority rule re-
ceiver, (2) the empirical fusion receiver based on algorithm in [2],
(3) the empirical fusion receiver based on the proposed iterative
algorithm and (4) the optimal fusion receiver.

It can be seen from the figure that the proposed iterative algo-
rithm consistently outperforms the majority rule receiver and the
algorithm proposed in [2] as the number of participating receivers
increases. Also, it should be noted that in this case, the proposed
algorithm almost matches the performance of the optimal fusion
receiver for as few as 100 bit observations.

6. CONCLUSION

In this work, we present a power method based iterative procedure
to blindly estimate the BERs of N networked receivers. The pro-
posed algorithm uses the complete set of information available for
estimation and is computationally simple. It was shown that the
desired solution is a stable point of the algorithm and the algo-
rithm is locally stable. The proposed algorithm was shown to out-
perform the best receiver in the network and the standard majority
rule receiver and was also shown to match the performance of the
optimal fusion receiver for nearly all practical operating scenarios.
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