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ABSTRACT

In a multisensor network, sensor scheduling can be used to
minimize the cost of resources and improve system perfor-
mance. In this paper, we propose multisensor scheduling
algorithm using a particle filter and the unscented transform
for a target tracking application. Under the constraint that
only one sensor may be used at each time step, we predict
the expected cost multiple steps ahead. We achieve this us-
ing several sets of particles for each sequence of sensors and
then choose the sequence that minimizes the predicted cost.
An advantage of the proposed algorithm is that it can incor-
porate arbitrary cost functions. Monte Carlo simulations,
using squared error as the cost function, demonstrate the
improved target tracking performance achieved with sensor
scheduling.

1. INTRODUCTION

A critical aspect of a multisensor system is the constraint
on system resources such as sensor-lifetime, bandwidth or
computational complexity. Sensor scheduling, which is the
allocation of sensing resources over time, can minimize the
cost of resources and improve the performance of the sys-
tem under such constraints.

Sensor scheduling is a stochastic control problem that
involves optimization of an expected cost function over time.
Although this optimization can be performed using dynamic
programming [1], in practice computing optimal solutions
may be prohibitively expensive, and sub-optimal algorithms
are used instead [2–4]. Some cost functions that have been
used to schedule the sensors include sensor usage cost, mean
squared state estimate error [5], desired estimate covari-
ance [6], and information theoretic costs [2, 3, 7].

In this paper, we propose a scheduling algorithm that
computes expected costs one or multiple steps ahead using a
particle filter and the unscented transform (UT) [8]. We for-
mulate the algorithm such that different cost functions can
be chosen based on the application. The proposed algorithm
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is an extension of the sensor management approach in [7], in
which an information theoretic measure (Kullback-Leibler
distance) is used to schedule sensors one step ahead using
only a particle filter.

We implement the new scheduling algorithm in the con-
text of the following target tracking scenario. A target moves
in a 2-dimensional (2-D) plane. An infrared (IR) sensor and
a radar sensor are located at the origin, and we assume that
we can use only one sensor at a given time

�
. We sched-

ule the IR and radar sensors to obtain measurements, and
track the target based on the measurements using a particle
filter. The objective of the scheduling algorithm is to find
the sensor sequence that minimizes the expected predicted
cost one or multiple steps in the future. The predicted cost
is computed using state and observation samples obtained
from the particle filter and the UT. Monte Carlo simulations
show that the tracking performance improves significantly
with sensor scheduling.

2. TARGET TRACKING

We consider a target moving in a 2-D Cartesian coordi-
nate system. The target state at time

�
is defined as � � �� � � 	� � � � 	� � � � , where

� � and � � are the target positions
and 	� � and 	� � are the velocities. We model dynamics with
a linear constant-velocity model driven by white Gaussian
noise � � � � [5]

� � � � � � � � � � � � � " (1)

The radar and IR sensor provide three measurements:
range # , range rate 	# and azimuth angle $ . The measure-
ments are arranged as a vector % � � � # � 	# � $ � � � at time

�
.

They are nonlinearly related to the state as

% � � + - � � 0 � 2 3 5� (2)

where 6 � denotes the sensor used to obtain measurements
at

�
and may be either 6 � � 8 (for IR sensor) or 6 � � :

(for radar sensor). The IR sensor provides an accurate mea-
surement of the azimuth angle, while the radar provides ac-
curate measurements of the range and range rate. We model
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the relative accuracy by using different observation noise
covariance matrices for each sensor. The conditional densi-
ties � � � � � � � � � � and � � 	 � � � � � 
 � � can be derived from (1)
and (2). Note that full details of this model are given in [5].

The target state is estimated by a particle filter [9, 10].
The particle filter is an asymptotically optimal implemen-
tation of a recursive Bayesian filter based on samples (par-
ticles) and associated importance weights. The � samples
and weights at time

�
are denoted by � � � and 	 �� , where�   � � � � � � . A significant advantage of the particle fil-

ter is that it can be used for nonlinear systems with non-
Gaussian noise. It is used in this work to handle the nonlin-
earity of the measurement model.

3. SENSOR SCHEDULING

We select the sequence of future sensor uses that minimizes
an expected future cost; we make this selection by (approx-
imately) computing the expected future cost for each pos-
sible sequence of sensor uses. We use samples of future
states and observations to perform these computations. We
first investigated Monte Carlo methods to generate all of the
samples, but found them to be computationally intractable.
Hence, in this paper, we use the UT to generate samples of
future states and observations.

In this section we first derive expressions for the ex-
pected cost at

� �  ; expressions for
� � � are similar.

We then describe the method of generating samples and the
approximate computation of the expected cost with these
samples. The cost at

� �  is a function of the true state
� � � � , and the history of the selected sensors 
 � � � � � and
observations 	 � � � � � ; the state estimate �� � � � � � � � is a func-
tion of 
 � � � � � and 	 � � � � � . Thus, we denote the cost as� � � � � � � �� � � � � � � � � . The expected future cost is

 � 
 � � � �  ! # � % & ' ( � % & � ( & + � ' � & + � % &
. � � � � � � � �� � � � � � � � � 0

 2 � � 	 � � � � 	 � � � � 
 � � � � � � 2 � � � � � � � 	 � � � � � � 
 � � � � � � �
� � � � � � � �� � � � � � � � � 6 � � � � 6 	 � � � (3)

Using the model properties gives

� � 	 � � � � 	 � � � � 
 � � � � � �  2 � � 	 � � � � � � � � � 
 � � � � �
� � � � � � � 	 � � � � 
 � � � � 6 � � � �

� � � � � � � 	 � � � � � � 
 � � � � � �  � � 	 � � � � � � � � � 
 � � � � �
� � � � � � � 	 � � � � 
 � � � �� � 	 � � � � 	 � � � � 
 � � � �

In this work we use the squared error as the cost function.
We approximate the computation of

 � 
 � � � � in (3) us-
ing several sets of particles. To schedule one step ahead, we
generate the sets of particles shown in Figure 1 as follows.

Unscented
Transform

Set B: P Samples

Unscented
Transform

Set C: P Samples

Randomly
choose L

Set D: L Samples

Randomly
choose U

Set E: U Samples

Set A : N Samples
drawn from

xA,( j)
k xB,( j)

k+1 yC,( j)
k+1

xE,(u)
k+1

xD,(l)
k+1

xD,(l)
k+1 ∼ p

(
xk+1|xA,(l)

k

)

xE,(u)
k+1 ∼ p

(
xk+1|xA,(u)

k

)

p(xk|y1:k,s1:k)

Fig. 1. Sets of particles used to compute the objective func-
tion.

1. Let 9 �  : � < ' > � @� A C� D � be the set of resampled parti-

cles at time
�
.

2. Using the UT [8], deterministically draw E sigma
points from 9 � and project them to time

� �  to

form a set of particles F � � �  : � H ' > J @� � � A MJ D � and two

sets of measurements N � � �  : 	 O ' > J @� � � A MJ D � (one set

for 
 � � �  � and another for 
 � � �  � ). An ad-
vantage of using the UT is that the projected sigma
points approximate the statistics of the future states
and measurements very closely up to second order.

3. Randomly choose (with replacement) Q particles from9 � ; predict each of these particles to
� �  by sam-

pling from the distribution: � R ' > T @� � � U � � � � � � � � < ' > T @� � .

This gives us the set V � � �  : � R ' > T @� � � A XT D � . The set

! � � �  : � Y ' > [ @� � � A \[ D � is obtained similarly.

These sets of particles are then used to compute the approx-
imate expected future cost � � 
 � � � � using steps (i) through
(v) shown in Table 1 with ]   .

When scheduling ] steps ahead, the number of pos-
sible sensor sequences is ^ _ . We must compute the total
expected future cost for each possible sequence of sensor
uses. In the following, we describe the process for a given
sequence 
 � � � � � � ` with the understanding that it is applied
for each possible sequence.

To predict two steps ahead (given that F � � � � N � � � � V � � �
and ! � � � are computed), project the particles in 9 � to time� �  using the system model in (1), compute the mean
of the measurement particles as b	 O� � �  d MJ D e g > J @ 	 O ' > J @� � �

II - 302

➡ ➡



(where � � � � are obtained as a part of UT in step 2 above),
and assign to each projected particle a weight using �� �� � � as
the observation. These weighted particles are then resam-
pled to form the set 	 � � � . Steps 2 and 3 are performed at
time

� � 
 to obtain � � � � � � � � � � � � � � and � � � � . This pro-
cedure can be iterated up to time

� � � to obtain the five sets
of particles at each time step. With these sets, we can predict
the cost at each stage using steps (i) through (v) of the algo-
rithm in Table 1. The total cost for a sequence of sensors is
calculated by summing up the cost at each stage. We then
choose the sequence of sensor uses that gives the minimum
total cost. The proposed multiple step sensor scheduling al-
gorithm is summarized in Table 1.

Once the optimal sequence of sensors is selected, mea-
surements are obtained and the target state estimate is com-
puted using the particle filter.

4. SIMULATIONS AND RESULTS

We simulate a target trajectory in a 2-D plane which starts at
� � � 	 
 =(8000, 3000) m and ends at � � 
 � � 
 � 
 � � 
 
 m. The
initial velocities of the target in the

�
and 	 directions are

-300 m/s and -50 m/s, respectively. The sensors are fixed
at the origin, and the target moves for 35 s with each step
corresponding to 1 s. The measurement error covariance
matrices for the IR and radar sensors are the same as in [5].
For the particle filter algorithm, we used � � � 	 	 particles,
and a total of 200 Monte Carlo simulations were run.

The values for � � � and � were chosen to be 700,700
and 23 respectively. We compare the tracking results of
one and two step sensor scheduling (which we denote as� �

�
� � and � �

�
� 
 , respectively) with the case

of no-scheduling (NS). We also compare these results with
the one step extended Kalman filter (EKF) assisted schedul-
ing algorithm that we proposed in [5] (which we denote as� �  �

� � ). For the NS case, we use only the radar sensor.
A comparison of variances (in dB) of the position and ve-
locity estimates for the � �

�
� � � � �  �

� � , � �
�

� 

and NS cases can be seen in Figure 2. We observe that for
the scheduling cases, but not for the NS case, the variances
decrease steadily with time. This is more evident for the
variance in

�
(top plot in Figure 2) since the NS radar case

does not provide an accurate azimuth angle measurement.
Figure 3 illustrates a comparison of the mean square error
(MSE) (in dB) for different scheduling cases including the
three step sensor scheduling denoted as � �

�
� � . It can

be seen that the MSE decreases with time for the scheduling
cases while it levels out for the NS case. At time

� � � � ,
for example, the difference in MSE between the NS and
scheduling cases is about � �

dB. We should note that the
results for the one, two and three step scheduling are sim-
ilar which complies with the results presented in [5]. This
suggests that for the current dynamic model, looking ahead

For each possible sequence of sensors  � � � � � �  � � � � � (empty set) and! � � � �  � � % 
 � � & � ' � ( ) � � � � �
� ' �

* + � � � � % � ,� � � % ( � � % ! -
� For . =1 to � ,� Obtain sets 	 � � % � � � � % � � � � % � � � � % and � � � %

from 	 � � % � � and � � � % � �
� Compute the conditional objective function! � � � �  � � % 
 using steps (i) through (v)

(i) Compute 0 � � 2 3 �� � % using the particles in � � � %
0 � � 2 3 �� � % # 4 � � � 2 � � �� � % 5 � 6 2 � 3 �� � % �  � � % 


(ii) Compute the state estimate using � 6 2 � 3 �� � %
,� � � �� � % ( � � % � 8 93 : � 0 � � 2 3 �� � % � 6 2 � 3 �� � %

(iii) Compute the approximate conditional objective

function ,! � � � �  � � % 
 using the particles in � � � %
,! � � � �  � � % 
 � 8 93 : � 0 � � 2 3 �� � % + � � 6 2 � 3 �� � % � ,� � � �� � % ( � � % 


(iv) Compute the approximate conditional density of

� � 2 � � �� � % using the particles in � � � %
,4 � � � 2 � � �� � % 5 � � � � �  � � � � � 
 � 8 <= : � 4 � � � 2 � � �� � % 5 � � 2 � = �� � % 


(v) Compute the approximate objective function

,! �  � � % 
 � % '� ( > *+ � ) � � � � �
� ' � ( ) > A � 2 � > A � . > � */ � � � � � � ' � �

% '� 1 ( > *+ � ) � � � � 1 �
� ' � ( ) > A � 2 � > A � . > �� Calculate the approximate total cost for  � � � � � � %

,3
� � ' > A � ' 4 � 8  % : � ,! �  � � % 


End

Choose the optimal sequence of sensors as

 6 + 8
� � � � � �  � : ; = ? @ A � � ' > A � ' 4 D ,3

� � ' > A � ' 4 E
Table 1. Multiple step sensor scheduling algorithm.

just one step will suffice. Figure 4 compares the tracked tra-
jectory for the various scheduling cases. It can be seen that
the tracking performance for the scheduling cases is much
better than the NS case. Similar results were obtained when
an IR sensor was used instead of the radar sensor for the
NS case. We thus conclude that by scheduling the sensors
we obtain improved tracking results with low sensor usage
costs. It should also be noted that by using the new algo-
rithm, we can obtain as good results as with the algorithm
in [5]. The added advantage here is that the proposed algo-
rithm can be applied to different cost functions.
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Fig. 2. Comparison of the variances for the NS case and the
� �

�
� � � � and � �

� �
� � scheduling cases.

5. CONCLUSIONS

We have developed a sensor scheduling algorithm for tar-
get tracking using a particle filter and the unscented trans-
form. We schedule the sensors by predicting the expected
cost multiple steps ahead and minimizing the expected cost
obtained for all sensor sequences. Monte Carlo simulations
of our algorithm reveal that the tracking performance using
sensor scheduling is superior to the no-scheduling case. We
also observe that the tracking performance with the new al-
gorithm is compatible to the one we proposed in [5]. Notice,
however, that although the squared error cost function was
used here, the algorithm extends without modifications to
general cost functions as shown in [11].
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