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ABSTRACT

A statistical approach to distributed edge sensor detection is 
proposed for wireless sensor networks. Edge sensor detection is 
a technique to decide whether a target sensor is an edge sensor 
based on data from its neighboring sensors. It is desirable that 
the computational complexity be low and the amount of data 
transferred among sensors be small. With some reasonable 
assumptions and the maximal likelihood technique, we propose
both one-level and two-level decision methods to fulfill the above
two constraints .

1. INTRODUCTION

With an emerging need in environmental monitoring, military 
surveillance and security protection, research on wireless sensor 
networks has received a great amount of interest recently. In 
these applications, attributions of the monitored event over a 
certain area should be collected and analyzed. The edge
information is one of these important attributions. Although 
there are several well-developed edge detection algorithms in
image processing, it is difficult to apply them directly to the edge 
sensor detection problem due to the randomness of sensor 
locations within an event. 

Nowak and Mitra [1] proposed an edge approximation method 
for sensor networks using recursive dyadic partition (RDP). 
Chintalapudi and Govindan [2] proposed three approaches based 
on a localized edge detection technique for edge sensor detection; 
namely, the statistical approach, the filter-based approach and 
the classifier-based approach. The main difference between [1]
and [2] is that a hierarchical network architecture was assumed 
and utilized in [1] whereas there was no hierarchy among sensors 
in [2]. Another major difference between them is that the real 
boundary was approximated in [1] while only edge sensors were 
detected in [2]. Also, [2] outperforms [1] in terms of a lower
communication cost, which is critical in wireless sensor networks.

We follow the localized edge detection framework proposed in 
[2]. It was claimed in [2] that the performance of the classifier-
based approach is better than that of the other two approaches, 
yet the statistical approach is more robust to a higher sensor 
error condition. To enhance the poor performance of the
statistical approach, global and local decision rules based on the
maximal likelihood ratio test are developed to detect edge sensors 
in this work. To be more specific, a distributed detection scheme 
[3], [4], [5] is used to solve the edge sensor detection problem,
and new one-level and two-level decision rules  are obtained. In 
the proposed schemes, the readings are statistically described so 
that the optimal processing is feasible in local sensors and the 

fusion center. It will be shown that the proposed one-level and 
two-level decision methods achieve good performance, which is
close to the optimal solution.

2.  SYSTEM AND OBSERVATION MODELS

Each sensor is assumed to be randomly deployed over the area of 
interest. Due to this unpredictability of each sensor’ s location, it 
is difficult to find a thin edge over the sensor network. To 
simplify the problem, we define an edge region as the region 
whose distance from the actual edge is within tolerance range r .
Therefore, the width of the edge region is equal to r2 . The
sensors inside this edge region are called edge sensors. To decide 
whether a target sensor is an edge sensor, the measured data or 
local decision results of its neighboring sensors, whose distance 
from the target sensor is less than r , are collected and
transmitted to the fusion center for the global decision making.
We consider the white noise in wireless communication channels.
Assumed there are N  neighboring sensors around a target sensor 
and the measurement of the ith neighboring sensor at a particular 
time instance can be modeled as

iii nmy += , (1)

where Ai PAmP == )( , Ai PmP −== 1)0(  and ni is a Gaussian
random variable with zero mean and variance 2σ .

Furthermore, it is assumed that the PDF of the measurement of 
each neighbor sensor is i.i.d.. Thus, the PDF of 

iy  is equal to

),0()1(),()( 22 σσ NPANPyP AAi ⋅−+⋅= , (2)

where ),( 2σAN  is the PDF of a Gaussian distribution with the 
mean and variance equal to A  and 2σ , respectively.

3. PROPOSED DECISION METHODS 

Based on the system model given in Section 2, we proceed to 
derive the optimal fusion rule for edge sensor detection. The 
problem of detecting edge sensors can be modeled as a binary 
hypotheses problem as follows.

HF0 : The target sensor is not an edge sensor.
HF1 : The target sensor is an edge sensor.

It was proved in [4] that  the maximal likelihood ratio test can 
provide the optimal decision result for such a problem when the 
threshold is appropriately chosen, and we will use it to derive 
optimal edge sensor detection rule. Before starting the derivation, 
we first explain the difference between edge and non-edge (or 
regular) sensors as shown in Fig. 1.  We see that a regular sensor 
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Figure 1. Illustration of edge and non-edge sensors.

has its neighboring sensors either all inside the phenomenon or all 
outside the phenomenon, whereas an edge sensor does not. Thus,
we can use this characteristic as a criterion to distinguish between 
these two cases.

Approach I: One-Level Decision Method

In this case, the data measured by each sensor are transmitted to 
neighboring sensors within distance r directly without making
any local decision. Thus, there is no information loss in this
process. The assumption of independently identical distributions
(i.i.d.) is made for measurements in the following derivation.
Based on the observation model in Section 2 and the
characteristic of an edge sensor, the likelihood functions can be 
shown as:
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Then, the log likelihood ratio, ( ))(ln yΛ , can be computed and the 
log likelihood ratio test can be obtained as follows.
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However, since )( 0FHP  and )( 1FHP  are unknown, it is not a trivial 
task to determine the threshold. We will show how the threshold 
value affects the system performance in Section 4.

Approach II: Two-Level Decision Method

In this case, the data measured by each sensor are first processed 
by each sensor to get a local decision.  Then, the local decision is 
transmitted to neighboring sensors for further information fusion 
to make the global decision. Although some information is lost in 
the second data fusion step due to the first local decision step , it 
reduces the communication cost between sensors and the fusion 
center, which is the target sensor. In most applications, the 

available bandwidth is limited so that it would be costly to 
transfer raw data directly between sensors. Here, we consider the 
case where each local sensor makes a binary hypothesis test. 
Consequently, we have two levels of hypotheses as given below.

Local Hypotheses (the 1st level decision):
HL0 : The sensor is outside the phenomenon.
HL1 : The sensor is inside the phenomenon.

Global Hypotheses (the 2nd level decision):
HF0 : The target sensor is not an edge sensor.
HF1 : The target sensor is an edge sensor.

Although a similar derivation was conducted in [5], it dealt with 
the identical local and global hypotheses. In this work,
hypotheses in these two levels are different so that the derivation
becomes more complicated. Let Cij represent the cost of deciding 
HFi, given that HFj is present . The Bayesian cost function after
algebraic manipulations becomes

DDFB PCPR ⋅−⋅+= FCC , (7)

where

)()](1[ 000001 FF HPCHPCC ⋅+−⋅= ,

)](1[)(),()( 0110100010 FDFF HPCCCHPCCC −⋅−=⋅−= ,

)|( 01 FFF HHPP = , )|( 11 FFD HHPP = .

We would like to find a pair of optimal global and local decision 
rules so that (7) can be minimized. Here, we adopt the person-
by-person optimization to reduce the complexity of the
optimization problem. The inequality below was proved to be an 
optimal global decision rule in [5].
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where ),,,( 21 Nxxxx L= , ix  is the local decision result of the ith
neighbor sensor and u  is the global decision result of the fusion 
center. It is obvious that the optimal solution for the global 
decision rule is a likelihood ratio test. Consequently, we can 
determine the value of u  if the likelihood ratio is known for all 
possible *x .  In other words, we can make a global decision when 
the local decision result of each neighbor sensor is known.

To compute the likelihood ratio, we must know the local decision 
rule first. Next, we will derive the local decision rule. First, we
can rewrite (7) as
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After substituting (10) and (11) back into (9), the Bay esian cost 
function can be rewritten as
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By observing (12), it is easy to find that the optimal local 
decision rule is given by
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It is obvious from (13) that the optimal local decision rule is also 
a likelihood ratio test. We can easily compute the probability of 
detection, PD, and the probability of false alarm, PFA. Then, the 
optimal global decision rule can be written as
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where mx  is the vector x  with m 1’s.
However, the formula (14) is too complicated for a sensor to fuse
data, and further simplification is needed. 

To do so, we observe the trend of the log likelihood ratio. If the 
ratio is a monotonically increasing function of m, then K-out -of-
N rule can be adopted. If it is not, we have to find another way 
to simplify it. Fig. 2 shows the trend of log likelihood ratio. The 
value of SNR means the ratio between the received signal power 
and the noise power of a local sensor and N is the number of 
neighboring sensors inside the tolerance range. Obviously, it is 
not a monotonically increasing function, and the K-out -of-N rule 
is not appropriate. From this figure, we find that the value of the
log likelihood ratio is always larger than the given threshold in 
some continuous interval of m. Thus, we propose the following
global decision rule:

Decide HF0 : 21 or mmmm >< ,
Decide HF1 : 21 mmm << ,

where
21 mm < .

With this optimal global decision rule, the fusion center can 
perform the complicated data fusion processing easily and fast.
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Figure 2. The trend of log likelihood ratio

4. SIMULATION RESULTS

We conducted computer simulations with the following settings. 
The locations of sensors are assumed uniformly distributed. The 
phenomenon region is of a circular shape as shown in Figs 3 and 
5. The total number of sensors is 2000, the SNR value is 10dB 
and the tolerance range, r, is set to 1.

4.1. One-Level Decision Method

Figs. 3 and 4 provide simulation results for the one-level decision 
method, where edge sensors are detected using the log likelihood 
ratio test given by (6). The a priori probability, )( 1LA HPP = , is 
assigned as 0.5 for each sensor. Since we do not know the ratio of 

)( 0FHP  and )( 1FHP in advance, the threshold required in (5) is 
difficult to decide. The effect on the performance of edge sensor 
detection under different values of threshold is shown in Fig. 4. 

Fig. 3 shows one edge sensor detection result. The solid line is 
the actual edge location while the two dashed lines indicate the 
tolerance limits. The detection and the false alarm rates under
different thresholds are given in Fig. 4. From this figure, both 
rates are decreasing with an increasing threshold value. However, 
the decreasing rate of the false alarm probability is faster than 
that of the detection probability when the threshold is smaller 
than 15. Also note that the detection rate can be maintained 
around 80% when the false alarm rate is lower than 20%.

4.2. Two-Level Decision Method

Figs. 5 and 6 show the simulation results with the two-level
decision method that has a lower communication cost at the cost 
of poorer performance. The global decision rule in (14) is used
and the a priori probability )( 1LA HPP =  is assigned as 0.5.
The value of threshold is again a very important factor in this 
case. Thus, we also observe the impact on the detection and false 
alarm performance from different threshold values. Since some 
information is lost in the local decision process, the performance 
for this case should be worse than the one-level decision method 
that has a higher communication cost.
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Figure 3. Example of the edge sensor detection result when 
threshold=20

.
Figure 4.  The detection and false alarm rates for the one-level
decision method.

In other words, the performance of edge sensor detection using 
the one-level decision method can serve as a performance bound 
for the two-level decision method. Fig. 5 shows the edge sensor 
detection result. Again, we have the phenomenon region of a
circular shape, and the tolerance range is 1. Fig. 6 illustrates the 
detection and the false alarm rates with different threshold values.
From this figure, we see that the decreasing rate of the false alarm 
probability is faster than that of the detection probability while 
the threshold is smaller than 25. Nevertheless, the probability of 
detection decreases to around 0.6 when the probability of false 
alarm is approximately zero.

Finally, we compare the performance of the one-level and the 
two-level methods using the Receiver Operating Characteristics 
(ROC) curves as shown in Fig. 7. For the same false alarm rate, 
the one-level method has a higher detection rate than the two-
level method.
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