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ABSTRACT

In this paper, a Kalman filter based registration approach is pro-
posed for multiple asynchronous sensors. In the approach, a linear
time-varying measurement model is formulated using a first order
approximation and is shown to be uniformly completely observ-
able. The sensor registration errors are estimated based on the
application of a modified two-stage Kalman estimator. The pro-
posed registration approach is computationally efficient and is ca-
pable of handling asynchronous sensor measurements. Simulation
and real-life data are used to demonstrate the effectiveness of the
proposed approach. Results are compared with the popular least
squares (LS) method.

1. INTRODUCTION

Data fusion has been defined as a process of dealing with associ-
ation, correlation and combination of data and information from
single or multiple sources to achieve refined position and identity
estimates. Sensor registration is a part of the level one processing
of data fusion which includes association, filtering and identifi-
cations. It refers to the process of ensuring the requisite error free
coordinate conversion of multiple sensor data, and is a prerequisite
for a data fusion system to accurately estimate and correct system-
atic errors. In multisensor integration, data from each sensor are
transformed into a common reference system for merging. Direct
transformation of data usually leads to limited success due to the
failure to register adequately by the individual sensors. The ef-
fect of sensor registration errors is to introduce biases into fusion,
generating ghost targets for multisensor signal processing [1].

Various registration algorithms [1][2][3][4][5][6][7][8] have
been developed recently. However, there are two problems that
have not been addressed: system observability and asynchronous
sensor measurements. System observability plays an important
role in system analysis and parameter estimation. It decides if
a system state can be recovered from the measurements. It also
determines the optimality of the Kalman filtering. Most of the
algorithms have assumed that the system under consideration is
observable by default, an assumption that may not hold without a
rigorous proof. Secondly, most registration algorithms assume that
the sensors are synchronized, which may not be true in practical
applications. In reality, sensors often operate asynchronously. The
scanning process of different radars may not be synchronized and
have different rate.

In this paper, a Kalman filter based registration approach is
proposed for asynchronous sensor measurements. Constant range
and azimuth errors are considered. The sensors are assumed to
be asynchronous and have different update rates. The near con-
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stant velocity model is used to describe the target motion dynam-
ics. A linear time-varying measurement model is formulated using
a first order approximation. Observability analysis is carried out
and it is shown that the linear time-varying measurement model
is uniformly completely observable. The observability of the sys-
tem ensures that sensor registration errors can be estimated from
the sensor measurements. A modified sensor measurement model
is formulated which contains both the target state and sensor reg-
istration errors. The two-stage Kalman estimator is applied for
estimating the target state and the sensor registration errors. The
estimation procedures can be described as follows. At each sen-
sor, a bias-free estimate of the target state is first computed using a
local Kalman filter when a sensor measurement arrives. The sen-
sor registration errors are estimated by another Kalman filter cycle
based on the measurement residual of the bias-free target state es-
timate. The a posteriori estimates of the bias-free states and the
sensor registration errors along with their covariance matrices are
propagated to the sensor site where the next measurement is re-
ceived. The algorithm iterates between the sensors as new mea-
surements arrive. The two-stage Kalman filter is equivalent to but
computationally more efficient than the augmented Kalman esti-
mator because it involves state vectors of smaller dimensions. The
algorithm has a distributed structure and can be implemented in a
parallel way. It is robust and suitable for real time applications. In
this paper, simulated and real-life multiple radar data are used to
evaluate the performance of the proposed approach. Comparisons
are made with the popular LS registration method.

2. PROBLEM FORMULATION

Consider two sensors A and B in a common plane. Without loss
of generality, we assume that sensor A is located at the origin of
the system coordinate and sensor B at coordinates (u, v). Assume
that sensors A and B both measure the range and azimuth of a
target.

The standard near constant velocity model is used for target
motion

e(k+1) = ®(k+1, k)z(k)+T(k+ v k), k=1,2,..., (1)

where z(k) = [z(k), vz (k),y(k), vy (k)]” denotes the state vec-
tor at the kth time instance. In the state vector, z(k) and y(k) are
the actual target coordinates in the system plane, and v, (k) and
vy (k) denote the speed in z and y coordinate, respectively; v (k)
is the process noise; ®(k + 1, k) and I'(k + 1) are the state and
noise transition matrix, respectively [9].

Let {74 (k),04(k)} and {75 (k), 5 (k)} denote the polar co-
ordinates of the target at the kth time instance relative to sensor
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A and B, respectively. We use {Ara, Afa} and {Arp, Afp}
to denote the range and azimuth biases of sensor A and B, re-
spectively. Let {wya(k),wea(k)}, {wrB(k), ws,p(k)} denote
the range and azimuth measurement noise of sensor A and B, re-
spectively. They are assumed to be independent, identically dis-
tributed (i.i.d) Gaussian processes with zero-mean and variances
024, 034, 02 and of, respectively. We use {z4(k),ya(k)}
and {zp(k),ys(k)} to denote the Cartesian coordinates of the
target reported by sensors A and B, respectively, in the system
plane. Using a first order approximation, the sensor measurement
models can be written as

zalk) = La(k) +Xa(k)dy +Za(k)wy (k)
zg(k) = Lz(k)+Xp(k)ig+EZskwg(k), (2
where
za(k) = [za(k),ya(k)]"
zp(k) = [za(k),yn(k)]"
wa(k) = [wea(k),woa(k)]”
wp(k) = [wen(k),wen(k)]”
3, = [Ara, 204"
by = [Arp, Afs]". 3)

In (2), 24 (k) and X (k) are given by

| sinfa(k) ra(k)cosfa(k)
Za(k) = { cosfa(k) —ra(k)sinfa(k) ] @)
_ | sinfp(k) rp(k)cosbp(k)
(k) = { cosOn(k) —rp(k)sin Oz (k) ] ®)
and matrix L is defined as
1 0 0 0
L= { 00 1 0 ] : ©

Define 1, (k) and i, (k) as the augmented state vector for sensor
Aand B, respectlveigy, which are formed by appending the sensor
biases to the target state vector. The measurement model (2) can
be written in the augmented form as

zy(k) = Ha(k)n,
zp(k) = Hp(k)n,

+Za(k)w, (k) (M
+ S5 (k)wy k), ®)

where Ha(k) = [L | Za(k)]. He(k) = [L | £B(k)]. The
augmented state transition matrix can be written accordingly as

d(k+1,k) 0

Su(k+1,k)=| gFTHE 00 ©)

2.1. Observability analysis

The observability of a system can be defined based on the prop-
erties of information matrix of the system. In the following, we
discuss the system for sensor A only. The same conclusion can
be drawn for sensor B. The information matrix J (k + S, k) for
system (1) and (7) is given by [10]

k+S

> @ali, )"

i=k

where Ra(i) = 4 (1) Qua Y% (1) and Qa4 = diag[o,, 0%e]-
A system is said to be uniformly completely observable if there
exists a positive integer S and positive &1 and &> such that

J(k+8,k) = HA ()R (1)@ (i, k) Ha(d),

ST < TJ(k+ S k) <&, (10)
for all £ > 0. It can be shown that the information matrix can be
decomposed into J (k + S, k) = UTQTQU, where  is a block
diagonal matrix with the ¢th sub-matrix given by Q. 2y (k +
i —1),and

Ha(k)
Ha(k+1)®q(k+1,k)
U= : . (11)

Ha(k+ S —1)®,(S + k, k)

The matrix U is called the observability matrix [11]. Let § = 3. It
is shown in [12] that U has a full column rank, i.e., its columns are
linearly independent of each other, and the observability matrix U
satisfies the observability rank condition. It can also be verified
that X 4 (k) and Q are non-singular. Since U has a full column
rank, it is sufficient that QU is also of full column rank. According
to a preposition by Song and Grizzle in [13], since QU has a full
column rank for all 64 (k) (a compact set), there must exist positive
constant £ and &> such that (10) holds, i.e., the dynamical system
(1) and (7) is uniformly complete observable.

3. SENSOR REGISTRATION

The Kalman filter is a natural candidate for estimating the sensor
biases from the asynchronous sensor measurements. We first re-
formulate the measurement model to include both the sensor A
and sensor B measurement model as

z(k) = Lz(k) + 2(k)d + w(k), 12)

where § = [A74,A84, Arg, A5]T, 2(k), (k) and w(k) are
assigned different values depending on whether the measurement
at kth time instance is from sensor A or from sensor B. The index
k is a combination of indices for sensor A and B measurements
ordered in time. When sensor A and B measurements occur at the
same time, we place the sensor A measurement in front of that of
sensor B for processing convenience. Let k(*) and k#) denote
the measurement indices for sensor A and B, respectively. When
the kth measurement is the k) th measurement from sensor A,
w(k) = Sa (kM )w, (k@) and

2(k) =z, (K"), S(k)=[ Sak™) 0], (13

where 0 denotes an all-zero matrix. If the kth measurement is the
) th measurement from sensor B, w(k) = Sp (k®))w 5 (k)
and

2(k)=z5(k"), S(k)y=[0 Spk®)]. (4

When sensor A and B measurements occur at the same time, since
the time difference between the two measurements is zero, the
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transition matrix ®(k + 1, k) reduces to an identity matrix. The
target dynamical model becomes

2(k+1) = 2(k). (15)

The proposed registration approach is based on the applica-
tion of the two-stage Kalman estimator to the reformulated mea-
surement model (12). The two-stage Kalman estimator is due to
Ignagni [14]. At each sensor site, a bias-free estimator computes
the bias-free target state estimate when a new measurement ar-
rives. Another Kalman filter cycle is used to estimate the sensor
registration errors based on the measurement residual of the bias-
free Kalman estimator. The a posteriori estimates of the bias-free
target states and the sensor biases along with their corresponding
covariance matrices are propagated to the sensor site where the
next measurement is received. The algorithm iterates between the
sensors and provides accurate sensor registration estimates as sen-
SOr measurements arrive.

4. PERFORMANCE EVALUATION

We first use computer simulations to study the performance of the
proposed registration approach. Two sensors are simulated with
sensor A located at the system origin and sensor B at (u, v), where
u = 300km and v = Okm. The standard near constant velocity
model is used for the target motion dynamics. The standard devia-
tion of the process noise o, is set to 0.06 times the mean velocity
in one sampling interval.

The track is simulated to have a slope of 1 relative to the line
connecting the two sensors. This track pattern is one of the most
typical track patterns that would be encountered by a pair of sen-
sors in sensor fusion applications. The sampling intervals are as-
sumed to be 4s and 3s for sensor A and B, respectively. The
time delays at the beginning of the two sensor measurements are
assumed to be zero.

The LS method [5] is used for comparison. The LS algorithm
is a special case of the GLS algorithm [1] in which the measure-
ment covariance is assumed to be an identity matrix. Since the
LS method requires synchronized sensor measurements, we use
the one-step fixed-lag smoothing approach proposed by Helmick
et al. [15] to time-translate sensor A measurements to the times
of sensor B measurements. For simplicity, a single near constant
velocity model is used for the target dynamics. In the smoother, a
one-step predictor is first used to predict to the subsequent sensor
B measurement time, which is corrected using the next sensor A
measurement to produce the smoothed estimates. The smoothed
estimates are then passed to the LS method for sensor registration.

Figures 1 shows the variations of the standard deviation (STD)
of the sensor registration error estimates for different measure-
ment noise cases. Five measurement noise cases are simulated.
The noise is assumed to be i.i.d Gaussian distributed with zero
mean and standard deviations given in Table 1. The sensor regis-
tration errors are simulated as Ars = 1km, Afa = 0.0105rad,
Arp = —0.8km and Afp = 0.0087rad. The numbers of sensor
measurements are K1 = 100 and K> = 135 for sensor 4 and B,
respectively. Each test is repeated 200 times to obtain the averaged
results. In the figure, the lines with a diamond legend denote the
LS results and lines with ’x’ are results obtained by the Kalman
filter based approach. The Kalman filter based approach demon-
strates clear improvements over the LS method. The LS method
performs poorly and fails when the measurement noise increases.
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Fig. 1. Variation of the STDs of the sensor registration error esti-
mates via different measurement noise.

Table 1. Standard Deviations of Noise in Range and Azimuth

case 1 case 2 | case3 case4 | caseS
ora (km) 0.05 0.1 0.5 1.0 1.5
o9 (rad) | 0.0056 | 0.0011 | 0.0028 | 0.0056 | 0.0111
orp (km) 0.05 0.1 0.5 1.0 1.5
ogp (rad) | 0.0056 | 0.0011 | 0.0028 | 0.0056 | 0.0111

We also apply the Kalman filter based registration approach to
real-life multiple radar data collected from an air surveillance net-
work. The radar network is composed of seventeen 24-by-24 foot
phased array L-band long range radars located along the coastline
of Canada. With a range of 200 nautical miles, these long range
radars measure the range, azimuth as well as the elevation of the
targets. Each radar also carries an IFF for target identification.
Tracks of air targets arise from commercial airlines.

To remove the effects of the false targets (clutters), target ID’s
provided by the identification of friend and foe (IFF) beacon are
used to extract the true aircraft tracks from radar returns for regis-
tration calculation. Each site in the system has two satellite dishes
for communications, and the communications between the radars
are via the Anik communications satellite. This radar network em-
ploys the stereographic projection [16] to map the elliptic earth
on a plane to get the stereographic ground range from the slant
range of a target. The target azimuth is measured relative to the
true north at the radar location and is adjusted so that it is relative
to the true north at the origin of the common coordinate system.
Figure 2 shows the target track measurements collected by two
radars of the air surveillance network. In the figure, the solid lines
are tracks observed by radar A and the dots denote the tracks ob-
served by radar B. The measurements have been converted to the
common system coordinate with the location of radar A as the ori-
gin. Radar B is located at (u,v) = (272.6406, 19.3287) nautical
miles in the system plane. Five tracks are reported by radar A and
B. We use a segment of track 2 data for registration. The number
of data points is 45. The standard deviation of the noise process
of the target dynamics is chosen to be approximately equal to the
maximum acceleration observed. This gives 0, = 0.0023 nau-
tical miles/s” and 7, = 0.0059 nautical miles/s” in the z and y
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Fig. 2. Real target track measurements collected by two radars of
the air surveillance network.

direction, respectively. The sensor registration errors are then es-
timated by applying the Kalman filter based registration approach
and the LS method.

Since there is no ground truth about the sensor registration
errors, i.e., the actual radar biases are unknown, we use the dis-
tance between the track measurements by the two sensors before
and after the registration as an performance index to measure the
quality of registration algorithm. The distances between the tracks
that are used for estimating the sensor registration errors before
registration are given by 3.1704 nautical miles. After registra-
tion, the distance reduces to 0.2731 and 0.5055 nautical miles, for
the Kalman filter based approach and the LS method, respectively.
Both methods are able to successfully reduce the track distance af-
ter registration to a great extent. However, the Kalman filter based
approach outperforms the LS method in that it produces a track
distance that is only about half of that by the LS method. We also
apply the sensor registration error estimates to the other tracks that
are not used in the registration process to examine the generaliza-
tion ability of the algorithms. In Table 2, we list the calculated
track distances for different tracks before and after registration us-
ing the Kalman filter based approach and the LS method. It can be
seen that both the Kalman based approach and the LS method can
reduce the track distance for tracks that are not used in the regis-
tration process. However, the generalization errors by the Kalman
filter based approach are smaller than those by the LS method. In
particular, for track 1, a segment of which is used in the registra-
tion process, the generalization error by the Kalman filter based
approach is only half of that by the LS method. This indicates that
the Kalman based approach has a better generalization ability than
the LS method.
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