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ABSTRACT

In this paper, we study the multiple target detection problem in
sensor networks. Due to the unique features possessed by sensor
networks, the multiple target detection approach has to be energy-
efficient and bandwidth-efficient. The existing centralized solu-
tions cannot satisfy these requirements. We present a progressive
decentralized detection approach based on the classic Bayesian
source number estimation algorithm. The progressive approach
is realized by a mobile agent framework, where instead of each
sensor sending raw data to a central unit, each sensor processes
data locally and a mobile agent is dispatched from the central unit
and migrates in the network updating the estimation progressively.
Experimental results show that this approach can achieve progres-
sive accuracy with the migration of mobile agent and reduce data
transmission dramatically.

1. INTRODUCTION

Multiple target detection in sensor networks remains a challenging
problem due to the non-stationarity of signals and many unique
features of sensor networks. Generally speaking, a sensor network
is composed of hundreds or thousands of sensor nodes densely de-
ployed in a field. Each sensor node can be an integrated entity
with multiple sensing modalities, data processing capability, and
wireless communication capability. Since sensor nodes are usu-
ally battery-powered and it is difficult to recharge or replace the
battery on a regular base, energy conservation becomes one of the
most important issues in the development of sensor network ap-
plications. The large amount of sensor nodes, the limited wireless
communication bandwidth, and the energy efficiency requirement
all present further difficulty to the multiple target detection prob-
lem in sensor networks.

If consider different targets in the field as sources and as-
sume the signals they generate to be independent, multiple tar-
get detection in sensor networks can be solved using the tradi-
tional blind source separation (BSS) algorithm where the signal
captured by individual sensor is a linear/nonlinear weighted mix-
ture of the signals generated by the sources. The “blind” qualifica-
tion in BSS refers to the fact that there is no a priori information
available on the number of sources, the probabilistic distribution of
source signals, or the mixing model [1, 2]. However, for concep-
tual and computational simplicity, the majority of BSS algorithms
are developed based on a fundamental assumption: the number of
sources equals the number of sensors.

Although the equality assumption is reasonable in small-size,
well-controlled sensor array processing, it is not the case in sensor
networks since the number of sensors is usually far more than the
number of sources. Several source number estimation algorithms

have been put forward in literature based on different principled
approaches, such as Markov chain Monte Carlo (MCMC) method
[3] and variational learning approximation [4].

The classic Bayesian estimation has been successfully imple-
mented in several applications [5, 6]. The Bayesian framework has
solid statistical basis and accommodates the usage of Bayesian fu-
sion rule in the distributed detection hierarchy as described in our
previous work [7]. However, its centralized structure is not suit-
able for sensor network applications as each sensor needs to send
all its data to a central unit where the estimation is performed. This
transmission of raw data from a large amount of sensors will oc-
cupy too much bandwidth and consume a lot of energy. This paper
focuses on solving this problem by modifying the classic Bayesian
estimation algorithm into a progressive detection approach based
on the iterative relationship between sensors. A mobile agent frame-
work is proposed to implement the progressive approach, where
the mobile agent is transmitted between sensors and the process-
ing of raw data is limited within each local node.

2. CLASSIC BAYESIAN SOURCE NUMBER
ESTIMATION

First, as the theoretical basis of this paper, the classic Bayesian
source number estimation algorithm is briefly summarized. Due
to page limit, readers are referred to [5] for detailed derivation.

Suppose there are � targets in the field generating indepen-
dent source signals �

� � �� 	 �  � 	 � � � 	 � and � sensors recording
signals �

� � �� 	 �  � 	 � � � 	 � , where �  � 	 � � � 	  indicates the
time index of the discrete-time signals. Then the sources and the
observed mixtures at time � can be denoted as vectors ! � � � " �

� � �# 	 � � � 	 �
� � �$ & ( and ) � � �  " �

� � �# 	 � � � 	 �
� � �+ & ( , respectively. If

the mixing process is assumed to be linear, the observations are
represented as ) � � �  . ! � � �

and the sources are estimated as/! � � �  1 ) � � �
, where . + 3 $ is the unknown non-singular scalar

mixing matrix and the unmixing matrix 1 is calculated as the
Moore-Penrose pseudo-inverse, 1  7 . ( . ; = # . ( .

Based on this linear, instantaneous mixing model, the source
number estimation can be considered as a hypothesis testing prob-
lem, where > $ denotes the hypothesis on a possible number of
targets and the goal is to find

/� whose corresponding hypothesis
> @$ maximizes the posterior probability given only the observa-
tion ) � � �

. According to Bayes’ theorem, the posterior probability
of the hypothesis can be written as

A C D F H I K L M N P Q C I K L M H D F N A C D F N
U W X X Y Q C I K L M H D N A C D N (1)

Assume the hypothesis > $ has a uniform distribution (i.e., equal
prior probability), then the measurement of the posterior probabil-
ity can be simplified to the calculation of likelihood [ 7 ) � � � ] > $ ; .
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In other words, the objective can be reformatted as finding
�� that

maximizes the log-likelihood function (objective function).
As discussed in [5], maximizing the informativeness of the

set of estimated sources may be achieved by making � as large
as possible, which requires some form of constraint. An alterna-
tive approach is to linearly map the observations � � � �

to a set of
latent variables, � � � �

, of the form � � � � 	 � � � � �
, followed by a

non-linear transform from this latent space to the set of source es-
timations,

�� � � � 	 � � � � � �  . The log-likelihood only depends on the
calculation of marginal integrals of � � � � � � � � � � � � � � � � �  , which
is the likelihood of � � � �

conditioned on the mixing matrix � , the
choice of non-linearity � , the noise variance � , and the latent vari-
ables � � � �

. By applying Laplace approximations on the marginal
integrals, the log-likelihood function can be estimated as:

� � � � � 	 
 � � � � � � � � �  �
� 	 
 � � � �� � � � � � � � �

� 	 
 � � ��
� � � � �� 	 
 � � �� � �� �

�
��

� � � � � � � �� �� � � � � ! �
� �� 	 
 � � ��

� � �

� � � �
 "

# % ' 	 
 � �( !# � � � � 	 
 � *
(2)

where + � ,  is the marginal distribution of the latent variables,
�� is

the noise variance on each component of sensor observations and�� 	 #$ % & . � � � � � 0 �� �� � � �  1 3 ,
�4 ' is the ( th component of

�� � � �
, and5 	 6 8 �� 8 : .

3. A PROGRESSIVE ESTIMATION FRAMEWORK

As discussed earlier, the classic Bayesian source number estima-
tion algorithm requires data from all the sensors to evaluate the
log-likelihood of different source number hypotheses. This will
generate a lot of traffic within the network and consume too much
energy. In order to accommodate the unique energy efficiency
requirement of sensor networks and perform target number esti-
mation in real time, we derive a progressive approach based on
the iterative relationship between sensors to evaluate the objective
function in Eq. 2, i.e., to update the log-likelihood evaluation only
based on its local observation and the information transmitted from
its exact previous sensor.

3.1. Progressive Estimation of the Log-likelihood Function

In the progressive estimation framework, instead of all the sensors
sending data to a central unit, data is processed locally at each sen-
sor. After receiving a partial estimation result from its previous
sensor, the current sensor will update the log-likelihood and the
mixing matrix � corresponding to different source number hy-
potheses and then transmit the updated results to its next sensor.
The updating rules at sensor ) is denoted as ; * � +

� � �* = > � ) 0 -   ,
where +

� � �* is the observation of sensor ) at time / and > � ) 0 - 
denotes the information received from sensor ) 0 - .

Let’s consider the derivation of updating rules to evaluate the
log-likelihood function. From Eq. 2, it is clear that each individual
term has a different iterative relation between sensors. Therefore,
we derive the updating rule for each term separately.

Term 1: The first term in Eq. 2 accounts for the marginal dis-
tribution of the latent variables. In normal cases, the distribution of
one latent variable

�4 ? can be assumed to have the form + � �4 � � �?  	
- @ � A � C  3 D F H I � C �4 � � �?  4 'J  , where K F L A � C  	 4 K F L � NO Q -  , C is
a scaling factor, 4 	 S 6 T 6 6 , V 	 S 6 X Y 6 , and [ 	 - 6 \ Y ] . Suppose

the mixing matrix at sensor ) is � * , then � * 	 � � 8* � *  % # � 8* ,
and ^ ? is the _ th row of � * . The updating rule for Term 1 can
be written as:

` 	 
 � � � �( � � �a � c e � ` 	 
 � � � �( � � �a � c e f ' � �h j k m � � � h ` �( � � �a c e f ' �
o ` j k m � � � h p a q e r � � �e � � �

c � p a q e r � � �e (3)

Term 2: The second term takes into account the noise vari-
ance � , which is estimated by the squared errors between the real
observations and their estimated counterparts. The updating rule
for Term 2 is:

` t � �
� 	 
 � � ��

� � � c e � t � �
t � � � � ` t � � � �

� 	 
 � � ��
� � � c e f '

� t � �
� 	 
 � � t � � � �

t � � � � t � �
� o � r � � �e � 9  a % ' w e q a �( � � �a � !

9 e f '# % ' � r � � �# � 9  a % ' w # q a �( � � �a � ! (4)

Term 3: The third term in Eq. 2 only depends on the updat-
ing rule of mixing matrix � , which will be discussed later in this
section.

Term 4: The updating rule for the fourth term in Eq. 2 is sim-
ilar to that of Term 2, which is written as:

` �
��

� � � � � � � �� �� � � � � ! c e � t � � � �
t � � ` �

��
� � � � � � � �� �� � � � � ! c e f '

� � � r � � �e �
 "

a % ' w e q a �( � � �a � o
e f '"

# % ' � r � � �# �
 "

a % ' w # q a �( � � �a � !

� � r � � �e �
 "

a % ' w e q a �( � � �a � !
(5)

Term 5: The fifth term is also affected by the noise variance�� . The updating rule is:

` t �
� 	 
 � � ��

� � � c e � t
t � �

` � t � �
� �

� 	 
 � � ��
� � � c e f '

� t �
� 	 
 � � t � � � �

t � � � � t �
� o � r � � �e � 9  a % ' w e q a �( � � �a � !

9 e f '# % ' � r � � �# � 9  a % ' w # q a �( � � �a � ! (6)

Term 6: This term in Eq. 2 accounts for the estimated latent
variables and its updating rule can be written as:

` t� �
 "

a % ' 	 
 � � �( � � �a � ! � c e � t
t � �

` t � �� �
 "

a % ' 	 
 � � �( � � �a � ! � c e f ' � t�
o

 "
a % '

� p a q e r � � �e � ! � � p a q e r � � �e ` �( � � �a c e f '
� ` �( � � �a c e f ' � ! (7)

Term 7: The last term in Eq. 2 is ) � K F L 5 , where 5 	 6 8 �� 8 : .
This term only depends on the updating rule of matrix � .

Progressive estimation of mixing matrix � : At the first sen-
sor, the mixing matrix � is initialized randomly. During the pro-
gressive implementation, sensor ( ) 0 - ) modifies matrix � � * % # � = &
locally, and sends the resulting matrix to sensor ) . After sensor )
receives the information, it first adds one more dimension (an ex-
tra row) to � with random numbers, and then finds the optimal
estimate of � * = & using the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) optimization method.

Estimation error: As the updating rules of the log-likelihood
function require (Eq. 4, Eq. 5, Eq. 6), sensor ) needs to update the
accumulated estimation error as { | | ~ | * 	 { | | ~ | * % # Q � +

� � �* 0
� & ? � # � * � ? 4 � � �?  1 and send it to its next sensor.
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Program 3.1 Progressive source number estimation algorithm.
/*Initialization*/
At sensor 1, for each possible m:

Initialize A (1 by m) using random numbers;
Compute W and a;
Compute estimation error;
Compute each term in Eq.2;
Compute L(m);

/*Sequential Update*/
While (max L(m)<threshold)

Send A, latent variables a, estimation
error and the seven terms in Eq.2 to the next
sensor i;

At sensor i, for each possible m:
Add one row to A with random numbers;
while (!converge)

Update A using BFGS method;
Update the accumulated estimation error;
Update each term in Eq.2;
Compute L(m);

/*Generate the final estimation*/
Decide m=arg max L(m);
Output m;

3.2. Algorithm

Based on the updating rules for each term in the log-likelihood
function and the mixing matrix � discussed in Sec. 3.1, the itera-
tive algorithm can be summarized as in Program 3.1.

4. MOBILE AGENT IMPLEMENTATION

The progressive estimation algorithm presented in Sec. 3 is poten-
tially energy efficient in that it avoids the transmission of raw data
from all the sensors to a central unit. In the progressive framework,
each sensor processes its data locally and only sends the updated
mixing matrix � , the estimated latent variables

��
� � �

, the estima-
tion error and the log-likelihood function. However, this approach
also has some drawbacks: 1) Each sensor needs to keep a copy of
the code to update matrix � and terms in the log-likelihood esti-
mation. When receiving information from its previous sensor, a
sensor needs a mechanism to execute the code; 2) The order of
sensors in the progressive algorithm is fixed which limits its ca-
pability to adapt to the dynamically changing environment. These
drawbacks make the algorithm not suitable for real-time estima-
tion in complex environment. To solve these problems, we pro-
pose a mobile agent based approach to implement the progressive
estimation.

Generally speaking, a mobile agent is a special kind of soft-
ware. Once dispatched, it can migrate from sensor to sensor per-
forming information processing autonomously. The structure of a
mobile agent consists of four attributes: identification, itinerary,
data, and processing code [8]. Identification uniquely identifies a
mobile agent. Itinerary is the route of migration. It can be fixed or
dynamically determined based on the current status of the network.
Data is the mobile agent’s data buffer which carries the informa-
tion transmitted from one sensor to another. In progressive esti-
mation, it carries the updated mixing matrix � , estimated latent
variables

��
� � �

, accumulated estimation error, and log-likelihood
evaluation. Processing code carries out the updating of informa-
tion when a mobile agent arrives at a local sensor.

Consider an example where the mobile agent migrates within
a cluster of 3 sensors to implement the progressive estimation al-
gorithm. The procedure of mobile agent based estimation is illus-
trated in Fig. 1. First, after initialization, sensor 1 will dispatch

Sensor 1
Initialization

Sensor 2

Sensor 3

� � � � � � �� � 	 
�
� � 	 
�

� � 	 

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � 	 


� � � � � � � � � �  � � � ! � � " � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � $

(a) Step 1.
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Sensor 2
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(b) Step 2.

Sensor 1

Sensor 2

Sensor 3

G H I J H I K

L M N OP
L M N OQ

L M N OR

(c) Step 3.

Fig. 1. Procedures of mobile agent based progressive estimation.
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Fig. 2. Scenario setup. Left: T-junction scenario 1. Middle: T-
junction scenario 2. Right: Circular parking lot scenario.

a mobile agent to sensor 2, carrying the information generated at
sensor 1 ( � ,

��
� � �

, accumulated error, log-likelihood function). As
shown in Fig. 1(a), when the mobile agent arrives at sensor 2, it
will read out the local observation �

� � �
� and update the information.

Before sending out the mobile agent to the next sensor, the max-
imum of log-likelihood corresponding to different source number
hypotheses is evaluated and compared to a threshold. If it is be-
yond the threshold, which means the information available is suffi-
cient to estimate the true number of sources, then the mobile agent
decides that

�	 
 T V � X T Z \ � 	 � and returns to sensor 1 carrying
the final result

�	 . Otherwise, the mobile agent will continue its
migration until it exceeds the threshold or all sensors have been
visited (as shown in Fig. 1(b) and (c)). In the end, sensor 1 outputs
the final source number estimation

�	 .

5. EXPERIMENTAL RESULTS

To evaluate the performance of the mobile agent based progressive
estimation approach, we apply it to a test data set collected from a
field demo, which is held at BAE Systems, Austin, TX in August,
2002. In the field demo, three scenarios are set up using civil-
ian vehicles and in each case, the progressive estimation algorithm
(Program 3.1) is implemented using the mobile agent framework.

In the first experiment, two civilian vehicles, a motorcycle
and a diesel truck travel along the N-S road from opposite di-
rections and intersect at the T-junction, as shown in the left fig-
ure of Fig. 2. There are 10 Sensoria WINS NG-2.0 sensors de-
ployed along the road which capture acoustic signals generated
from the targets. In our experiment, we choose sensor ] 38 at
the T-junction to be the starting node which initiates the migration
of mobile agent. The progressive estimation algorithm is applied
to 1-second segments (500 samples) of the acoustic signals and
the observation from each sensor is preprocessed component-wise
to be zero-mean, unit-variance distributed. The progressively up-
dated log-likelihoods at each sensor with mobile agent migration
are shown in the left figure of Fig. 3. The different profiles in
the figure correspond to different target number hypotheses (from
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Fig. 3. Progressively estimated log-likelihood. Left: T-junction scenario 1. Middle: T-junction scenario 2. Right: Circular parking lot
scenario. � -axis: Sensor index the mobile agent migrates to. � -axis: Normalized log-likelihood.

� � � to � � � ). Based on the average log-likelihood over the
500 samples, it is clear that the estimation accuracy is improved
progressively with the migration of mobile agent and the hypothe-
sis with the true source number ( � � � ) has the greatest support.
Actually, when the support is sufficient to make a decision, i.e.,
the estimated log-likelihood is beyond an appropriate threshold,
the mobile agent can directly return to the first sensor and report
the result instead of finishing the whole itinerary. Therefore, this
approach can save response time and consume less energy.

The second scenario has the same sensor laydown as that in
experiment 1. The estimation algorithm is performed when the
motorcycle travels from west to south, the diesel truck from north
to west and they intersect at the T-junction, as shown in the mid-
dle figure of Fig. 2. The log-likelihood estimations corresponding
to different source number hypotheses averaged over 500 samples
versus the migration of mobile agent are illustrated in the middle
figure of Fig. 3. We observe from the figure that the log-likelihood
of the hypothesis with the true source number ( � � � ) is easily
distinguished from others.

Experiment 3 uses a different scenario carried out in a parking
lot with two civilian vehicles, a diesel truck and a pickup truck,
traveling through a sensor network in a convoy. Fifteen sensors are
deployed in a circular field with diameter of 1400 feet, as shown
in the right figure of Fig. 2. The estimated log-likelihoods cor-
responding to different source number hypotheses versus mobile
agent migration are shown in the right figure of Fig. 3. The figure
exhibits similar growth pattern of the log-likelihood estimation ac-
curacy as the mobile agent migrates among the sensor network and
gives the greatest support to the true hypothesis ( � � � ).

One significant advantage of the mobile agent based progres-
sive source number estimation approach is the reduction of data
transmission within the network. For example, in experiment 1 and
2, there are 10 sensors deployed along the road. The algorithm is
performed over 1-second segments each of which consists of 500
samples. Therefore, in the classic estimation approach, 144,000
bits of data need to be transmitted, while in the mobile agent based
progressive estimation approach, only 12,096 bits of data have to
be transmitted, which is about � � � � of the classic approach. In ex-
periment 3, there are 15 sensors deployed in the field. 224,000 bits
of data need to be transmitted in the centralized approach, while
27,200 bits of data need to be transmitted in the progressive ap-
proach which is � � � � � � of the centralized one.

6. CONCLUSION

This paper studied the problem of source number estimation in
sensor networks for multiple target detection. Due to the sheer
amount of sensors deployed, the limited wireless communication
bandwidth, and the battery-powered fact of the sensor node, the
classic centralized approach would not provide satisfactory solu-
tion. In this paper, a progressive source number estimation algo-

rithm is presented which is derived based on the classic Bayesian
estimation algorithm using iterative relationship between sensors.
A mobile agent framework is proposed to implement the progres-
sive algorithm in sensor networks. Three experiments are con-
ducted on the detection of multiple civilian vehicles using acoustic
signals to evaluate the performance of the approach. It is shown
that the mobile agent based progressive approach provides the great-
est support to the true source number hypothesis in all cases and
is able to achieve progressive accuracy with the migration of mo-
bile agent. In addition, the progressive approach can reduce the
amount of data transmission to � � � � (10 sensors) and � � � � � � (15
sensors) compared to the classic approach.
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