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ABSTRACT

Advances in integrated technologies are making networks of many
inexpensive deployable autonomous sensors a reality. Individu-
ally, each sensor may not accomplish much, but working cooper-
atively they have for example the potential to monitor large areas,
detect the presence or absence of targets, or track moving objects.
These sensors operate under constraints imposed by scarce power
and other limited resources like bandwidth or computing capacity.
The paper considers detection in such a distributed sensors envi-
ronment. We investigate the impact on detection performance, as
measured by the probability of error, of such parameters as num-
ber of sensors, number of quantization levels at each sensor, or
signal to noise ratio, under a rate constraint on the common access
communications channel. We optimize the local detectors when
the number of sensors is large. We show that the performance loss
due to quantization decays exponentially fast as the number of bits
per sensor increases and that the choice between hard versus soft
local detectors depends not only on the noise distribution and the
quantization rate, but also on the SNR under which the sensors
operate.

1. INTRODUCTION

Sensor networks are becoming a reality due to the increasing lev-
els of integration offered by technology. In scenarios of interest,
the sensors are autonomous and resource starved: power, band-
width, computing are all scarce commodities. Individual sensors
provide negligible performance, but as an aggregate they have the
potential to achieve reliably the desired application goals. There
are many issues of interest in such sensing network scenarios. We
focus here on detection performance when the number of sensors
is large (asymptotic analysis) and on the tradeoffs among parame-
ters of interest like the number of sensors, how many bits per local
decision, and SNR. We address these tradeoffs when the sensors
operate under a global rate constraint imposed by their common
access communications channel.

Understanding these tradeoffs is important since it provides
answers to important questions, like: how many sensors of a par-
ticular type should be deployed in certain environments and whether
or not it is advisable to use hard versus soft detectors. This paper
considers these questions when the number of sensors is very
large. Under this asymptotic regime, we present the structure of
the optimal detector, show that the optimal performance of the sen-
sor network with quantized local detectors of bits approaches ex-
ponentially fast with the performance of infinite-bandwidth sys-
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tems (i.e., with unquantized local detectors), and establish, under
a channel rate constraint, when should we opt for fewer higher
quality sensors (more bits per sensor) rather than more lower qual-
ity sensors (fewer bits per sensor). This particular question is also
addressed by [1].

We consider here a very specific architecture for the sensor
network, a parallel architecture, see Fig. 1, where there is no com-
munication among the local sensors, an the local detectors feed
their quantized decisions to a single fusion center. This decentral-
ized detection architecture has been considered by many authors
since the pioneering work of Tenney and Sandell [2] and Tsitsiklis
[3]. Due to lack of space, we rely on [3] as well as the book by
Varshney [4] for an introduction and overview to the area of de-
centralized detection, although since their publication, many other
relevant papers have also appeared in the literature.

2. MODEL AND PROBLEM STATEMENT

We consider here the following distributed detection problem for
the sensor network: sensors gather measurements per
sensor , make a local decision per measurement and send
the decisions to a single fusion center 0 through an error-free
multiple-access channel (MAC) as shown in Fig. 1. This particular
architecture is often referred to as a parallel fusion network [4]. We
consider this problem when the MAC has a rate constraint . The
fusion center makes a global decision about the true state of
nature based on the collection of the local decisions gathered
from all sensors. In the version of the problem we consider here
explicitly, the fusion center does not sense measurements directly.

We cast the problem as a binary detection problem with hy-
potheses 0 and 1. In addition, we assume that the observations
{ : = 1 2 = 1 2 } are, conditioned on ,
independent and identically distributed with conditional densities
0( ) = ( | 0) and 1( ) = ( | 1).

Since the fusion center makes the final decision, the output of
the fusion rule 0 is binary, i.e., either 0 or 1. Local sensors,
on the other hand, are not restricted to binary outputs: each sen-
sor classifies each measurement Y into = 2 classes,
where is the number of transmitted bits per sensor per mea-
surement. We can think of each classifier as a mapping from
the observation space Y to the classification space U , i.e., :
Y U . Similarly, the fusion rule maps local decisions
{ : = 1 2 = 1 2 } into one of two classes,
i.e., 0 : Y {0 1}.

There are two main problems that we address in this paper:

1. For a fixed number of sensors, we investigate the impact
of the number of bits per local classifier on the overall de-
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Fig. 1: Parallel fusion network

tection performance represented by the probability of error
= Pr( 6= ). This, in turn, allows for making deci-

sions about how large the number of bits per sensor should
be in order to meet certain performance requirements.

2. For a fixed MAC rate constraint , we assess the role of
SNR in deciding whether to use many low-cost detectors as
opposed to using few high-quality sensors.

3. OPTIMIZATION: ASYMPTOTIC ANALYSIS

A major source of difficulty with the general problem in section
2 is that optimization is performed over all possible classification
rules and all possible fusion rules 0 0. However,
the conditional independence assumption simplifies the problem
greatly since, in this case, optimal local classifiers are likelihood
ratio tests characterized by a finite number of thresholds. An-
other simplification can be introduced by assuming that the like-
lihood ratio 1( ) 0( ) is monotonic in , in which case, we
are allowed to quantize the measurements directly rather than their
likelihood ratios. In summary, for a fixed fusion rule 0, the opti-
mization problem amounts to finding the set of optimal thresholds
= { = 1 2 = 1 2 1} given by

=arg min
R ( 1)

( 0) (1)

where is a vector containing the optimal local thresholds and
( 0) is the probability of error associated with the

specific number of samples per sensor, number of sensors ,
number of bits per sample , and local thresholds .

It should be noted that the spatio-temporal conditional inde-
pendence assumption results into the indistinguishability of space
and time. Under such assumption, what affects the probability of
error ( 0) is the total number of samples and
not the individual values of and . In other words, the system
described above with sensors and samples per sensor would
be equivalent to a system with sensors each of which is trans-
mitting a single sample. For this reason, without loss of generality,

we will assume that = 1 throughout the rest of the paper and
drop the dependence on .

Up to this point, we have not discussed the structure of opti-
mal fusion rules. Although, this issue is crucial to the overall de-
sign process, we adopt an asymptotic approach ( ), which
abstracts the details of the fusion center and, therefore, simplifies
the optimization. Design of the fusion center is addressed in [5],
where we use a non-asymptotic approach and show that optimal
fusion rules have an interesting structure similar to the majority
voting rule. Also, in [5], we show how the SNR affects conver-
gence towards the asymptotes.

In what follows, we are primarily concerned with the asymp-
totic regime ( ). This regime provides an alternative mea-
sure of performance in terms of the error decay rate. Specifically,
for any reasonable fusion rule 0 and local classification rules,
the associated probability of error decays exponentially fast as the
number of samples grows to . Although optimal local detectors
are not necessarily identical even when the observations are identi-
cally distributed, it has been shown in [3] that the performance loss
due to this assumption is negligible especially when the number of
sensors is large. We study the problem here assuming identical lo-
cal detectors. In this case, one appropriate way of representing the
performance of the system is through the error decay rate given by

( ) = lim
1
log ( 0) (2)

where R
1 here is a vector containing the 1 thresholds

of the identical local detectors. Thus, we only need to optimize the
error decay rate ( ), which is much easier to compute than the
exact probability of error ( 0). Chernoff’s theorem
states that the best achievable exponent in the probability of error
at the fusion center is given by

( ) = max
[0 1]

( ) (3)

( ) = log
U

[ 0( )] [ 1( )]
1 (4)

where represents the decisions produced by the local classifiers,
U = {0 1 1} is the classification set, and ( )
{0 1} are the conditional probabilities of deciding given that

is true. Since results from quantizing the measurement ,
its probability is related to the pdf of through the quantization
thresholds as follows

( ) = ( | ) =
+1

( ) = ( +1) ( )

(5)

where 0 and are defined to be and , respectively, and
( ) is the conditional cumulative density function (ccdf) of

defined as

( ) = ( ) (6)

As long as the thresholds are designed optimally, the error
decay rate ( ) should increase as we increase the number of
bits per sensor . In the extreme case, when goes to infinity, the
raw (unquantized) measurements are sent to the fusion center and,
hence, the system becomes a centralized detection network. In this
case, the error decay rate is independent of the thresholds
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and, from Chernoff theorem, it is given by

= min
[0 1]

log
Y

[ 0( )] [ 1( )]
1 (7)

Usually, the minimization step in the last equation does not cause
much difficulty since it is a one dimensional optimization prob-
lem. In contrast, a decentralized detection system that quantizes
its local measurements to bits per sample would have to be op-
timized with respect to the error exponent ( ). Since we have
to optimize 1 thresholds, evaluating the best error exponent
involves an dimensional optimization and, therefore it is much
harder to do. Since ( ) is always less than due to infor-
mation loss caused by the quantization process, we will be most
interested on the ratio ( ) = ( ) 1. Also, it plays an
important role in the comparison of systems with different quan-
tizers. For example, when the rate of the MAC channel is lim-
ited to bits per second, it was shown in [1] that using bi-
nary sensors is guaranteed to be optimal as long as 2( )

1
2

.
We optimize the objective function ( ) = log(1 ( )). To
formulate this optimization problem we show the explicit depen-
dence of on and rewrite it as ( ) = log(1 ( ))
where ( ) = ( ) . The constraints can be simpli-
fied by optimizing over the inter-threshold distances rather than the
thresholds themselves. For this purpose, we define the vector of
inter-threshold distances =( 1 2 1), where 1 = 1

and = 1 = 2 3 1 and write the optimiza-
tion problem as follows

min ( ) subject to

0 = 2 3 1 and 0 1 (8)

4. ALGORITHM

The problem presented in (8) is an -dimensional constrained non-
linear optimization problem. This makes it extremely difficult, if
not impossible, to find analytical solutions, especially when the
number of bits per sample is large. Therefore, we propose a
gradient-based numerical approach to solve this optimization prob-
lem. Due to the large number of constraints, instead of moving in
the direction of the -dimensional gradient, we propose an algo-
rithm similar to the cyclic coordinate descent explained in [6]. In
this algorithm, each optimization step involves moving along the
direction of the one-dimensional gradient with respect to one of the
variables as long as the constraints are satisfied. The optimization
is then carried out cyclically over all variables.

Each step in the algorithm involves the computation of the
gradient = ( ) with respect to a variable in the vec-
tor = ( 1 2 ), then moving in the direction of that
gradient according to as long as the constraints
are not violated. In our work, the arrangement of the variables is
such that = ( 1 2 1 ) then the algorithm loops over
all variables sequentially. The algorithm keeps searching until all
gradients = 1 2 approach zero or if a maximum num-
ber of iterations has been exceeded.

Proper initialization plays another crucial role in the conver-
gence of the algorithm. In the following section, we will provide
a guideline on how to initialize the thresholds. In addition, our re-
sults show that a good initial value for is 0 5. In fact, in all of the
cases studied in the following section, the algorithm converged to
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Fig. 2: Optimized thresholds for = 8 (255 thresholds)

0 5. This is interesting since it suggests that it is reasonable to re-
place the Chernoff rate in our optimization with the simpler Bhat-
tacharyya coefficient with little or no loss in performance. Also, it
is interesting to observe that the Chernoff information, which is the
exponential rate of the average probability of error, is equivalent to
the Renyi -entropy when = 0 5.

5. RESULTS AND APPLICATIONS

We consider a parallel fusion network with sensors gathering
measurements each and quantizing them using identical quan-
tizers to bits per measurement as as explained in section 2 and 3.
Local observations are conditionally independent and identically
distributed and, in addition, are assumed to follow the additive
noise model = + , where is the signal mean under

= 0 1 and is a zero-mean noise with known distribution
and variance 2. Our main objective here is to see how the error
decay rate behaves as a function of the number of bits per sample

We use the algorithm developed in the previous section to opti-
mize the thresholds and the parameter in order to find the min-
imum = ( ) or, equivalently, the maximum error decay
rate = ( ). Fig. 2 shows these thresholds produced by
the optimization algorithm for the case of = 8 bits per sample
when the observations are Gaussian with mean 0 = 1, unit
variance, and SNR=10dB. It can be seen that all of the 255 thresh-
olds are concentrated around the intersection of 0( ) and 1( ),
which is not unexpected since this is the region where it is hardest
to distinguish between 0 and 1. This also gives a guideline on
how to initialize the thresholds in the optimization algorithm.

For the problem of determining the number of bits per sam-
ple, we considered three different distributions. In addition to the
Gauss, we considered the Laplace and Logistic distributions be-
cause they have heavier tails than the Gauss distribution and we
are interested on finding how this impacts our results. Fig. 3 il-
lustrates the interaction between SNR, number of bits per samples
, and , which represents the error between the quantized and

unquantized error exponent. There are two curves shown per dis-
tribution, one for the high SNR case SNRH = 20 dB and for the
low SNR case SNRL = 0 dB. In all cases, it was assumed that
0 = 1 and 2 = 1. It is clear from Fig. 3 that decays

linearly with increasing . This means that the decay rate of the de-
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tection error based on quantized measurements approaches that of
unquantized measurement exponentially fast as the number of bits
per sample is increased. This, in turn, suggests that it is not ad-
vised to go for lower compression rates since the performance gain
is expected to be small. In addition, Fig 3 indicates that low SNR
values lead to better , which indicates that the ratio of the quan-
tized to the unquantized error decay rate = becomes
higher for low SNR conditions. However, it does not suggest that
the error rates themselves are improved when the SNR becomes
lower since both and decrease in this case. In what fol-
lows, we demonstrate how the SNR affects the choice of sensor
types when the overall communication requirement is fixed.

Our aim here is to investigate the role of SNR in designing
decentralized detection systems with fixed communication con-
straints. We consider the problem of deciding whether to use 2
low-cost hard ( = 1) sensors versus high-quality quaternary
( = 2) sensors. Due to their quality difference, each sensor type
offers a different SNR value denoted by 1 and 2 for the binary
and the quaternary sensors, respectively, where 1 2. This
problem is similar to the one addressed by the authors of [1] with
the exception that they made the assumption that 1 = 2. This
assumption led to preference of the binary detectors over any other
alternative as long as 1 = 1 1 2, which is satisfied in
many cases. This is not surprising since, after all, if all alternative
sensors provide the same SNR then the sensor independence as-
sumption will drive us into choosing the alternative with the largest
number of sensors, which corresponds to larger number of obser-
vations. What might not be so obvious is which alternative should
we chose if each one offers a different SNR.

We show the dependence of the performance criteria on the
SNR and rewrite the ratio as ( ) = ( ) ( ). It can
be shown that the choice of binary over quaternary sensors should
be made whenever

( 2)

( 1)
2 1( 1)

2( 2)
(9)

In the case where equal SNRs is assumed, the condition reduces to
1 1 2, which is satisfied for Gaussian and exponential ob-

servations [1]. However, in the general case where 1 2,
we have to check the condition in (9) by explicit evaluation of

min
1
max
2

2 max
1
min
2

2
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2

1
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C

C

Fig. 4: Decision regions for choosing binary versus quaternary
detectors

pdf min max
binary quaternary

Gauss 1 1 2 2 1.14 1.62
2 0 79 0 88

Laplace 1 1 2 1 1 2.5
2 0 8 1

Logistic 1 1 2 3 4 1.06 2.0
2 0 73 0 94

Table 1: Bounds on ( )

both sides of the inequality. This requires solving two optimiza-
tion problems to compute 1( 1) and 2( 2), in which case we
make use of the algorithm presented in the previous section. A
set of weaker conditions is obtained by bounding ( ) such that
min ( ) max which can be done by finding the lim-

its as and 0, respectively. In some cases these
limiting values can be found analytically as in the binary case.
An approximation to these limits can also be obtained by run-
ning the optimization algorithm at very high and very low SNR
values. Table 1 shows the bounds on ( ) for different distrib-
utions when 0 = 1 and 2 = 1. Using these bounds, the
choice of binary versus quaternary sensors can be done accord-
ing to Fig. 4. The boundary thresholds binary = 2

min
1

max
2 and

quaternary = 2
max
1

min
2 for different distributions are in Table 1.

CONCLUSIONS The results in this paper provide a way for de-
signing sensor networks based on not only the sensor compression
rate but also the SNR that each sensor type provide. For example,
when observations are Gaussian, the analysis provided in this pa-
per enables us to state that it is preferable to use quaternary sensors
as long as they can offer 2.1dB more SNR than binary sensors.
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