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ABSTRACT

Sensor networks for monitoring distributed spatial phe-
nomena has emerged as an area of significant practical in-
terest. In this paper we investigate fundamental issues in
detection of spatially distributed phenomena under commu-
nication constraints. The novelty of the paper is in pro-
viding a tradeoff between global performance and costs in-
volved in communication. In particular we focus our at-
tention on boundary estimation and develop a framework to
optimize communication costs subject to worst-case mis-
classification guarantees. It is shown that the communi-
cation cost is primarily a function of two parameters—1)
length of the boundary 2) Overall mis-classification error—
which leads us to the conclusion that wireless sensor net-
work performance is comparable to that obtained with a
wired network of sensors.

1. INTRODUCTION

Recent advances in sensor and computing technologies [1,
2] provide impetus for deploying wireless sensor networks
– a network of massively distributed tiny devices capable
of sensing, processing and exchanging data over a wireless
medium. Such networks are envisioned [2] to provide real-
time information in such diverse applications as building
safety, environmental control, power systems and manufac-
turing.

Despite its enormous potential the design and deploy-
ment of SNETs pose fundamental challenges. This is a di-
rect consequence of three factors, namely, power, ad-hoc
networking, and uncertainty. Power limits the range of trans-
mission and overall system lifetime. Ad-hoc networking
protocols lead to asynchronous data transmission [3]. Un-
certainty implies the unreliability of data received by the de-
cision agent(s). It has been shown recently [4] that the first
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two factors, namely, power limitation and asynchronous
transmission together play a fundamental role in diminish-
ing the average bandwidth per active user in a network. This
implies that SNET operation must shift from the conven-
tional time-driven to an event-driven mode. SNETs have
received significant attention within the networking, signal
processing and information theory communities [5, 6, 7, 8,
9, 10].

In this paper we focus on the question of how to provide
fundamental guarantees for end-to-end information quality
under communication constraints. We develop these ideas
in the specific context of boundary detection. If the observa-
tions are centrally available there is a well-established solu-
tion methodology for such problems.
Fundamental problems arise when data is distributed and
the centralized solutions are no longer feasible due to time
and rate constraints (finite bit budget). Our motivation is
based on recent work [8] on this topic, where an estima-
tion viewpoint of the problem is presented. The setup in [8]
consists of n nodes in a unit square area placed on a square
lattice, with each sensor node making noisy estimates of
the local sensor field. The sensors then locally collabo-
rate with their corresponding “cluster head” to determine
the estimates of the underlying field. The cluster head then
makes a local decision either to preserve the distinct mea-
surements or to combine them into a single aggregate pa-
rameter. This process is then repeated at different levels to
obtain a multi-scale representation of the sensor field. Ulti-
mately, the boundary estimate is provided by those sensors
whose measurements are preserved as part of the represen-
tation of the sensor field.

Although, this approach provides meaningful tradeoffs
between accuracy and the energy required for communica-
tion, it has significant drawbacks. First, boundary detection
is an indirect outcome of the process of representing the sen-
sor field. Second, the approach does not quantify the perfor-
mance in terms of boundary detection or mis-classification
error probability. Nevertheless, the main drawback is sta-
tistical. From a hypothesis testing viewpoint the method at
the lowest layer can be interpreted as a variant of the so
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called Bonferroni procedure [11]. This scheme pertains to
the problem of simultaneous testing of a large number of
hypotheses. In the context of boundary detection this setup
would view each local sensor observation as an indepen-
dent hypothesis and thus with L sensors one has L different
hypothesis. One is interested in testing between the null
hypothesis (absence of a boundary) against a family of hy-
pothesis (presence of a boundary). The sensor-by-sensor
inference procedure leads to significant increase in the false
positive rate. The Bonferroni procedure controls the over-
all false alarm rate, α, by setting a uniform local threshold,
α/L, for each of the L sensors and performing simultane-
ous inferences at each of the sensors. As the number of
sensors increase for a fixed global false alarm specification,
the Bonferroni approach would imply a vanishingly small
local false alarm rate, leading to a significant decrease in
power of detecting a boundary when one exists.

Our paper overcomes these drawbacks by formalizing
the problem as a distributed boundary detection problem.
Rather than attempting to control the overall false positive
rate, we attempt to control the so called false discovery
rate (FDR [12, 13]). The false discovery rate is the ex-
pected fraction of accepted hypothesis that are erroneously
accepted. This weaker notion, as it turns out, leads to sig-
nificant increase in the power of detection, while still main-
taining (in a weak sense) the false alarm rate. We develop a
distributed implementation of the FDR procedure appropri-
ate for sensor network problems. We show that the commu-
nication costs scale with the length of the boundary and the
preset tolerance for the overall FDR.

The organization of the paper is as follows. In Section 2
we provide a description of the problem setup. In Section 3
various solution methodologies are discussed along with ac-
companying communication costs. Section 4 provides the
main results.

2. PROBLEM STATEMENT

We desire a distributed boundary detection approach with
limited communication, yet which directly controls perfor-
mance, in particular the false discovery rate. Such a sensor
network is illustrated on the left in Fig. 1, where the center
of each sensor node is denoted by a triangle, and a node’s
region of influence or visibility is indicated with an associ-
ated circle.

As discussed above, the typical approach in such dis-
tributed detection problems is to collaborate with the near-
est cluster head. Each cluster head then simultaneously per-
forms pruning, which amounts to setting a uniform thresh-
old on local detections. This corresponds to the so called
Bonferroni strategy. In contrast, here we start with an over-
all specification of desired false discovery rate and then vary
the local thresholds to achieve this performance goal. The

objective is to quantify the relationship between size of bound-
ary, desired FDR and the communication costs.

In this preliminary work we restrict ourselves to a two
layer sensor network system. At the first and finest layer we
apply an FDR-based threshold strategy for local detection
of a boundary at each and every sensor node. For the sake
of exposition we briefly describe the FDR scheme. Sup-
pose, we have an indexed family of hypothesis, H0i, i =
1, . . . , L. The p-statistics pi for each of the individual hy-
pothesis is computed (we refer to the following section for
details). The order statistics, p(1) ≤ p(2) ≤ . . . ≤ p(L) for
these p-values are then computed. The final step involves
computation of the largest integer, K, such that p(K) ≤
(K/L)α and accepting those sensors whose p-statistics are
smaller than this number and rejecting the rest.

In the context of boundary detection we view each sen-
sor node as observing data xi. We assume a probabilistic
model for mapping the underlying sensor field to the obser-
vations. We consider two hypothesis. The null hypothesis,
H0k, denotes the absence of a boundary in the neighbor-
hood of sensor, sk, while, H1, denotes the presence of a
boundary. In situations where each sensor has a probing ra-
dius R it is possible to define a mapping of hypothesis to
the actual observations. In this situation we assume a gen-
eral probability distribution. In situations where the sensor
observations are point estimates we assume a Gaussian ran-
dom field. Neighboring sensors collaborate with a cluster
head as in [8], which in turn maps the two hypothesis to the
observations. In either case local p-statistics correspond-
ing to the presence of a boundary are formed individually
at each of the sensor nodes. The question arises as to how
to compute the order statistics in a distributed manner. This
is accomplished based on a binning argument. There are
log2 L bins with the kth bin corresponding to the interval
(kα/L, (k + 1)α/L]. We assume that the desirable FDR
rate, α, and the number of sensors, L, in the region are glob-
ally known. First, all the j sensors whose p-statistics fall
into the first bin are identified as sensors at the boundary.
This is accomplished by broadcasting or any other suitable
protocol. A counter at each sensor node is then updated
to j + 1. Sensors falling within the jth bin and excluding
the first j sensors are then declared as accepted. The com-
munication terminates when no such sensor is found. It is
clear that the communication cost in this procedure scales
linearly with the length of the boundary and is a monotoni-
cally increasing function of the FDR rate α. It turns out that
this relationship can be precisely established.

While, this procedure may suffice in many instances, the
detection performance degrades when either the noise in-
creases or when the probing radius is small. To overcome
this issue we consider a multi-layered approach. The idea
is to set varying FDR rates at different layers to control the
overall FDR rate. The first layer will typically have a larger
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FDR rate and admits a larger number of false alarms. To fur-
ther control these false alarms, we perform a second level of
inference. In particular, for each sensor node that declared a
detection at the finest level, we perform a confirmatory test
at the second level, wherein each retained node communi-
cates with its neighbors and performs a second boundary
test on a larger spatial scale. These larger scale tests involve
more data, occurring over a larger area, and thus are more
reliable. The cost is the increased communication necessary
to perform such a broader, coordinated test. Our approach
limits this expensive second level communication to just a
small subset of the entire set of possible nodes. Interest-
ingly, the overall approach can be formulated in terms of an
optimization problem that seeks to minimize the communi-
cation subject to overall FDR constraints. This is the first
time, to our knowledge, that such performance guarantees
have been included in a sensor network detection method.

Fig. 1. Illustration of a sensor network. On the left is the
collection of sensor centers, denoted by triangles. The local
sphere of influence of each sensor node is denoted by the
associated circle. When a local detection occurs, the sensor
communicates with its neighbors in an attempt to confirm
its observation. This process is illustrated on the right. The
sensor node with dashed lines has locally declared a detec-
tion of a boundary. It is coordinating with its neighbors,
illustrated by the lines to refine this decision.

3. THRESHOLD STRATEGIES

We have a set of L sensors with the ith sensor denoted by si.
The sensor si observes xi, which is corrupted by i.i.d zero
mean Gaussian noise with variance σ2. Each sensor, si, can
have J1 local neighboring sensors with which it can collab-
orate and their measurements are denoted as x1

i , . . . , x
J1
i .

Our two layered approach for boundary detection works
as follows. For the first layer, we choose the FDR to be α1.
The hypotheses set consists of H0i : {si is in a uniform region}.
Let mi = 1

J1

∑J1
j=1 xj

i . The random variable we test at each
si is defined as:

wi = xi − mi (1)

and its probability distribution is N(0, J1−1
J1

σ2). We first
compute the p-value at each si: pi = 2(1− F (|wi|)) where

F is the cumulative distribution function of wi, and perform
a distributed FDR test.

Step 1: Sensors with pi ≤ 1
Lα1 are declared accepted. This

is accomplished by some suitable protocol. Each sen-
sor then updates a local counter to keep track of the
number of edges, Ks that have been accepted.

Step 2: If there are no sensors with pi ≤ Ks+1
L α1, the algo-

rithm terminates; otherwise, the process is repeated.

At the second layer, we perform a similar FDR test with,
rate α2, on the subset of sensors, E that have been accepted.
In this second layer, each element of the subset, E , collab-
orates with J2 neighbors (over a radius larger than the first
layer), with mean value mi,j , to form more reliable esti-
mates. The random variable vi is now defined as:

vi = mi − 1
J2

J2∑

j=1

mi,j (2)

and its distribution is N(0, J2−1
J1J2

σ2). The same algorithm as
in the first layer is then performed for sensors in the set E .
The parameters α1 and α2 are picked based on an optimiza-
tion criterion which minimizes the overall communication
costs subject to overall FDR constraints.

4. PRELIMINARY RESULTS

We have tested our algorithm on a field of sensors of size
128 × 128 as shown in Fig. 2.

On the first layer, we set α1 = .1, and the results of our
algorithm is shown in Fig. 3(a). For the second layer, we set
α2 = α1/6 and the final outcome is shown in Fig. 3(b).

We compare these results with a two layer Bonferroni
method and results appear in Fig. 4(a) and (b). The result
of the method [8] are also shown in Fig. 5. The boundaries
detected by the method of [8] are indicated in Fig. 5 as solid
squares.

Our two layer, optimization-based FDR approach has
identified the correct boundary location and successfully sup-
pressed false detections. The standard Bonferroni-based
method does not possess sufficient power under the given
false discovery constraint to find the boundary. Similarly,
the complexity modified MSE procedure in [8] fails to ro-
bustly identify the boundary.

5. CONCLUSIONS

We have presented an approach to distributed processing
in sensor networks which optimized communication costs
subject to worst-case mis-classification guarantees. Our ap-
proach provides a framework in which to rationally include
both communication and performance constraints.
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Fig. 2. The noisy sensor network measurement.

(a) (b)

Fig. 3. Boundary detection results with our method. (a)
Layer 1 results. (b) Layer 2 results.

(a) (b)

Fig. 4. Boundary detection results with the Bonferroni
method. (a) Layer 1 results. (b) Layer 2 results.

Fig. 5. Boundary detection results with the method in [8].

6. REFERENCES

[1] Seth Edward-Austin Hollar, “COTS dust,” M.S. the-
sis, University of California, Berkeley, 2000.

[2] G. T. Huang, “Casting the wireless sensor net,” MIT
Technology Review, July-August 2003.

[3] Hong Xiaoyan, Xu Kaixin, and Mario Gerla, “Scal-
able routing protocols for mobile ad hoc networks,”
IEEE Network Magazine, pp. 11–21, July-August
2002.

[4] P. Gupta and P. R. Kumar, “Capacity of wireless net-
works,” IEEE Transactions on Information Theory,
2000.

[5] J. F. Chamberland and V. V. Veeravalli, “Decentralized
detection in sensor networks,” IEEE Transactions on
Signal Processing, 2003.

[6] N. Patwari and A. Hero, “Reducing transmissions
from wireless sensors in distributed detection net-
works using hierarchical censoring,” in ICASSP.
IEEE, 2003.

[7] “Collaborative information processing,” IEEE Signal
Processing Magazine, 2002.

[8] R. Nowak and U. Mitra, “Boundary estimation in sen-
sor networks,” in 2nd International Workshop on In-
formation Processing in Sensor Networks, Palo Alto,
CA, April 2003.

[9] P. Ishwar, R. Puri, S. S. Pradhan, and K. Ramchandran,
“On rate-constrained estimation in unreliable sensor
networks,” in IPSN 2003, Palo Alto, CA, USA, April
2003, Information Processing in Sensor Networks, pp.
178–192.

[10] Sandeep S. Pradhan and Kannan Ramchandran, “Dis-
tributed source coding using syndromes (discus): De-
sign and construction,” IEEE Transactions on Infor-
mation Theory, vol. 49, no. 3, pp. 626–643, March
2003.

[11] R.J. Simes, “An improved Bonferroni procedure for
multiple tests of significance,” Biometrika, vol. 73,
pp. 751–754, 1986.

[12] Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: A pratical and powerful approach to
multiple testing,” Journal of the Royal Statistical So-
ciety, Series B, vol. 57, pp. 289–300, 1995.

[13] X. Shen, H.-C. Huang, and N. Cressie, “Nonparamet-
ric hypothesis testing for a spatial signal,” Journal
of the American Statistical Association, vol. 97, pp.
1122–1140, 2002.

II - 272

➡ ➠


