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ABSTRACT

We consider the problem of binary distributed detection in the con-
text of large-scale, dense sensor networks. We propose to model
the probability of detection in each sensor, pd, as a function of the
distance between the sensor and the source or target to be detected.
We derive the Bayesian fusion rule under that model. We also de-
rive, using the asymptotic gaussianity of the log-likelihood ratio,
the Neyman-Pearson fusion rule. The performances of both tests
is analyzed using large deviation bounds on the error probability
and a parametric approximation to pd. The main conclusions of
the analysis of these bounds are that, for designing efficient tests
in terms of energy comsumption, 1) the sensors must be grouped
in areas of the order of the range of the local detectors, and, 2)
the sensor must be configured to achieve the best local discrimina-
tion between hypothesis, independently of the configuration of the
network.

1. INTRODUCTION

In 1986, Chair and Varshney [1] determined the optimum Bayes
decision fusion rule for the binary distributed detection problem
when the local detection rule is known. Two years later, Tsitsik-
lis [2] shown that when the number of sensor is arbitrarily large,
the optimal binary decentralized detection is achieved by identical
local detection rules. From that, many author have proposed and
analyzed different optimal fusion rule under a variety of criteria
(see [3] and the references therein for a review on this topic).

On the other hand, the recent advances in the development
of small and low powered devices that integrate sensing, process-
ing, and wireless communication capabilities [4] make possible the
large-scale, dense and random sensor networks where the above al-
gorithms are valuable tools. Nevertheless, some of the hypothesis
of the original problem has to be revised. First, the conditional
probability distribution under each hypothesis in each sensor can
be different due to the spatial variation of the signal (or source, or
target) to be detected and, second, if the sensors are identical as
suggested in [2], the Probability of False Alarm (PFA) and Proba-
bility of Missdetection (PM) must vary from sensor to sensor ac-
cording to a its position. Authors in [1] have been considered dif-
ferent PFA and PM for each sensor, but no further analysis was
given.

This work were done while the author was visiting Cornell Univer-
sity. This visit was supported by a grant of the Secretarı́a de Estado de
Educación y Universidades.

In this paper we propose a model in which the probability of
detection (including false alarms) of the sensor varies as a function
pd of the distance between the sensor and the source or target to
be detected. Following this model, we analyze the simple problem
of detecting a target knowing its position and the position of the
sensors under both Bayes and Neyman-Pearson (NP) tests. After
deriving the log-likelihood ratio (LLR), we will obtain the thresh-
old for the NP test using the asymptotic gaussianity of the LLR.
The performances of both tests are analyzed using large deviation
bounds on the error probability and a parametric approximation of
pd. We also provided, using these bounds, rules for designing the
test for the exploration of a given spatial area.

The paper is organized as follows. The statement of the prob-
lem and the notation used in the paper is established in Section 2.
The LLR tests are derived in Section 3. Sections 4 and 5 are de-
voted to the analysis of, respectively, asymptotic gaussianity and
large deviation bounds. The optimization of the test is done in
Section 6, and the conclusions end the paper.

2. PROBLEM STATEMENT AND NOTATION

We consider a random deployment of sensor with density ρs sen-
sors per area unit over an area D ∈ R

2. Each sensor applies the
same binary detection rule, not necessarily based on a LLR test.

The exploration of the area D gives as a result the data set
{(xi, yi) : i = 1, . . . , l, xi ∈ D, yi ∈ {0, 1}}, when each pair
(xi, yi) represents a successful reading of a sensor located at co-
ordinates xi that can detect (yi = 1) or not (yi = 0) a target.

The probability of a positive detection (Y = 1) in a sensor lo-
cated at coordinates x when a target is present at coordinates x

t is
denoted as pd(xt, x, α), where α is the probability of false alarm
(PFA) of the sensor when no target is present. In other words,
pd(xt, x, α) = Pr(Y = 1|X t = x

t, X = x) when the PFA of
the detector is equal to α. pd(xt, x, α) has the following proper-
ties:

1. pd(xt, x, α) ≥ α

2. pd(xt, x, α) = pd(‖x
t − x‖2

2, α)

3. pd(xt, x, α) ≥ pd(x
t, x′, α) ⇔‖xt−x‖2 ≤ ‖xt − x

′‖2

4. lim‖xt−x‖2→∞ pd(xt, x, α) = α

Given D, we define two hypothesis, H0 or null hypothesis for
the case when no target is present, and H1 or alternative hypothesis
for the case when a target is present.
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• Under hypothesis H0, the joint pdf of X and Y is

fX ,Y |H0
(x, y|H0) = ρ (α δ[y − 1] + (1 − α) δ[y])

where ρ =
`R

D
dx

´−1
and δ is the Kronecker function.

• Under hypothesis H1, the joint pdf of X and Y is

fX ,Y |H1
(x, y|H1) = ρ(pd(x

t
, x, α) δ[y − 1]

+ (1 − pd(x
t
, x, α)) δ[y])

We assume that samples in {(xi, yi) : i = 1, . . . , l, xi ∈
D, yi ∈ {0, 1}} are conditionally (under H0 or H1) independents.

When necessary, we can assume the following parametric ap-
proximation to pd, that we called the “spanish hat” model:

pd(xt
, x, α) =

(
(1 − β) if ‖xt − x‖2 < r0

α otherwise

where r0 is the range of the sensor. This model considers a con-
stant probability of missdetection when the target is located inside
the range of the sensor and a constant false alarm probability out-
side the range of the sensor. This simple model is provided to gain
some insight into the performance analysis.

3. HYPOTHESIS DETECTION PROBLEMS

Given {(xi, yi) : i = 1, . . . , l, xi ∈ D, yi ∈ {0, 1}}, the log-
likelihood ratio between both hypothesis can be computed as

λ =
lX

i=1

ln Γi

where

Γi =
pd(x

t, xi, α) δ[yi − 1] + (1 − pd(xt, xi, α)) δ[yi]

α δ[yi − 1] + (1 − α) δ[yi]

=

(
1−pd(xt,xi,α)

1−α
if yi = 0

pd(xt,xi,α)
α

if yi = 1

Under Bayes criteria, the threshold τ is easily set as

τ = ln
π0(C10 − C00)

π1(C01 − C11)

but the resulting Bayes risk is hard to determine due to the non
trivial partition of the input space, except for the single sensor (l =
1) case.

In order to understand the difficulties regarding the partition
of the input space, lets analyze the case of two sensor (l = 2) with
the threshold set to 0 (τ = 0, that could corresponds with uniform
costs and equally likely a priori probabilities). If y1 = y2 = 1,
the log-likelihood is greater than zero (λ > 0) independently of
the values of x1, x2, and α. If y1 = y2 = 0, λ < 0 independently
of the values of x1, x2, and α. If y1 = 1 and y2 = 0 (or viceversa)
λ can be less or greater than 0 depending on the values of x1, x2,
and α. In this case

λ = ln
pd(xt, x1, α)

α
+ ln

1 − pd(xt, x2, α)

1 − α

H1

≷
H0

0

induces a nonlinear partition of the space x1 × x2.

Under the NP criteria, the determination of the threshold given
the power of the test is basically as hard as the determination of the
Bayes risk.

In the cases of interest the number of sensors is very high and,
thus, under either Bayes or NP criteria, the solution of the problem
becomes impossible to set and/or analyze. On the other hand, the
high number of sensors opens the door of asymptotic statistics,
that we will explore in two directions: first, using the asymptotic
normality of λ to set the threshold of the NP test and to analyze its
power and, second, using large deviation exponential bounds on
the test error based for both Bayes and NP tests.

4. ASYMPTOTIC GAUSSIANITY

When the number of sensor, l, tends to infinity, the log-likelihood
ratio, λ, tends to a normal random variable. We will first determine
the means and variances of λ under the two hypothesis, and then
determine the threshold and power of the NP test under gaussian
statistics.

Lets denote γ = ln Γ and γHi
= γ|H=Hi

. The mean of γH0

is given by

E{γH0
} = −D(fX ,Y |H0

‖fX ,Y |H1
)

where D is the Kullback-Leibler (KL) divergence [5]. We will
denote D(fX ,Y |H0

‖fX ,Y |H1
) as D(H0‖H1) for short. In our

problem, D(H0‖H1) can be decomposed as

D(H0‖H1) = −H(α) − αP1 − (1 − α)P0

where H is the binary entropy function, and

P1 =

Z
D

ρ ln pd(xt
, xi, α) dx

P0 =

Z
D

ρ ln(1 − pd(x
t
, xi, α)) dx

Similarly,

E{γH1
} = D(fX ,Y |H1

‖fX ,Y |H0
) = D(H1‖H0)

and

D(H1‖H0) = −h(X , Y |H1) − ln αPr(Y = 1|H1)

− ln(1 − α)(1 − Pr(Y = 1|H1)) − ln ρ

where h is the differential entropy. The variances of γH0
and γH1

are, respectively

E{(γH0
+ D(H0‖H1))

2} = E{γ2
H0

} − D
2(H0‖H1)

E{(γH1
− D(H1‖H0))

2} = E{γ2
H1

} − D
2(H1‖H0)

The threshold τ of the NP test of level αl is, according to the
above

τ =
q

l (E{γ2
H0

} − D2(H0‖H1)) Q
−1(αl) − l D(H0‖H1)

and its power, βl, is given by

βl = Q

0
@ l D(H1‖H0) − τq

l (E{γ2
H1

} − D2(H1‖H0))

1
A
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where Q is the Marqum’s function, and Q−1 its inverse.
Now we will analyze the form that takes the most relevant

parameter, D(H0‖H1), when using the “spanish hat” approxima-
tion of pd. In order to simplify the analysis, lets assume that the
area D ∈ R

2 is a circle of radius R centered on x
t. In that case,

D(H0‖H1) is

D(H0‖H1)=

8<
:

r2

0

R2

“
α ln α

1−β
+ (1 − α) ln 1−α

β

”
if R ≥ r0“

α ln α

1−β
+ (1 − α) ln 1−α

β

”
if R < r0

(1)
It is important to realize that the “spanish hat” model is a first

order approximation of any function pd. If we denote by Dsh de
KL divergence under the “spanish hat” model, for any function
p∗

d(xt, xi, α
∗) that induces a divergence D∗(H0‖H1), we can

obtain a Dsh(H0‖H1) such that Dsh(H1‖H0) = D∗(H1‖H0)
by setting the parameters of the “spanish hat” model as follows:
α = α∗, and solving β and r0 for equating P0 and P1 under the
two pd functions.

Using an equivalent procedure, different values of β and r0

can be obtained by setting Dsh(H1‖H0) = D∗(H1‖H0), and
thus functions like D(H1‖H0) + D(H0‖H1) that determines the
power of the test can be lower and upper bounded, and so any
function of moments of γ. Alternatively, instead of using multiple
“spanish hat” functions for bounding any function of moments of
γ, we can use a similar single function that takes constant values
of pd over concentric rings for equating a given pd.

5. LARGE DEVIATION BOUNDS

As some authors point out [5], the estimates of the probability of
error based on the central limit theorem give only good approxi-
mation only for a few standard deviations from the mean. A more
powerful estimates of the probability of error are the large devia-
tion bounds in the form of error exponents. If εl is the probability
of error (of some kind) obtained with l observation, the error ex-
ponent is defined as

lim
l→∞

−
1

l
ln εl

In NP test, the best error exponent is given by the Stein’s
lemma, that applied to our problem says that for any αn ∈ (0, 1)

lim
l→∞

−
1

l
ln βl = D(H0‖H1)

a function that has been analyzed in the preceding section.
In Bayes tests (assuming that C10 − C00 = C01 − C11),

the best achievable error exponent is the Chernoff information,
C(fX ,Y |H1

, fX ,Y |H0
) or C(H1, H0) for short, defined as

C(fX ,Y |H1
, fX ,Y |H0

) = D(fX ,Y |s0
‖fX ,Y |H1

)

= D(fX ,Y |s0
‖fX ,Y |H0

) (2)

where

fX ,Y |s(x, y|H0) =

fs
X ,Y |H1

(x, y|H1) f1−s

X ,Y |H0
(x, y|H0)P R

fs
X ,Y |H1

(x′, y|H1) f1−s

X ,Y |H0
(x′, y|H0) dx′

and s0 the value of s such that (2) is satisfied.

The Chernoff information can also be obtained as minus the
minimum of the cumulant generating function (cgf) of the log-
likelihood ratio per sample under hypothesis H0 (or H1), i.e.,

C(H1, H0) = −
1

l
min

0≤s≤1
µλ,0(s)

that in our problem takes the form

µλ,0(s)= l ln

»Z
D

ρ

„
pd(xt, x, α)s

αs−1
+

(1 − pd(x
t, x, α))s

(1 − α)s−1

«
dx

–

Using the “spanish hat” model and a circular D as before, the cgf
is

µλ,0(s)= l

8<
:

ln
“

r2

0

R2

“
(1−β)s

αs−1 + βs

(1−α)s−1

”
+

“
1 −

r2

0

R2

””
if R ≥ r0

ln
“

(1−β)s

αs−1 + βs

(1−α)s−1

”
if R < r0

(3)
That achieves its minimum respect to s when

s = s0 =
ln 1−α

α
+ ln ln 1−α

β
− ln ln 1−β

α

ln
“

1−β

β

1−α

α

” (4)

6. OPTIMIZATION OF THE TESTS

The sensors are assumed to be battery powered, and the wireless
transmissions from sensors to the fusion center is the most energy
consuming operation [4]. For elongating the life of the sensor net-
work, a reasonable criteria is to read the minimum number of sen-
sors to achieve a probability of error in the problem of detecting
the target less or equal a given arbitrarily small value, ε1. Also,
as the power-related quantity that is assumed to be constant is the
number of deployed sensor per area unit, the above criteria must
be transformed to the minimum number of sensors per area unit.

Assuming that l is large enough or, equivalently, that the sen-
sors are densely deployed, the number of read sensor to achieve a
probability of error less or equal to ε, l, is

l ≥
ln ε

D

where D = D(H0‖H1) for NP tests, and C(H1, H0) for Bayes
tests. The number of read sensor per area unit to achieve a proba-
bility of error less or equal to ε, lρ, is

lρ ≥
ρ ln ε

D
(5)

By minimizing the right side of (5), we want to answer the follow-
ing questions:

1. Given the sensors, are they any optimum configuration of
the exploration area D?.

2. Given D, and supposing that we can tune the sensors for
different values of α following the ROC curve of the sensor,
what is the optimum value of α?.

3. Are the solutions of the above questions independents?

1For the NP tests, ε is the power of the test, and for Bayes tests, ε is the
mean probability of error.
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The analysis will be performed using the “spanish hat” model
and circular exploration areas around the target.

For NP tests, the minimum of (5) is equivalent to the maxi-
mum of

D(H0‖H1)

ρ
=

8<
:

πr2
0

“
α ln α

1−β
+ (1 − α) ln 1−α

β

”
if R ≥ r0

πR2
“
α ln α

1−β
+ (1 − α) ln 1−α

β

”
if R < r0

(6)
and the first conclusion is that the exploration area, D, must cover,
at least, the range of the sensor, having no penalty for exploring big
areas (other than the managing larger amount of data). This con-
clusion is maintained using more realistic pd functions, as shown
in Figure 1, where all the shown functions have the same effective

range re =
q R

(pd(xt,x,α)−α) dx

π (pd(xt,xt,α)−α)
, that here takes value equal to 1.
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(H

0||H
1)/

ρ

(b)

Fig. 1. Different pd functions (a) and its corresponding values of
Eq. 6 as a function of R.

Considering now a fixed value of R, and considering also that
r0, the range of the sensor, is an intrinsically fixed parameter of
the sensor, finding the maximum of (6) is equivalent to finding the
maximum of the binary discrimination [6] between α and (1−β),

Lb(α, 1 − β) = α ln
α

1 − β
+ (1 − α) ln

1 − α

β
(7)

Obviously, Lb(α, 1 − β) can be infinite if α or β (or both) are
zero, but we can only achieve the combinations α and β that al-
lows the ROC curve of the sensor. Depending on the ROC curve,
the maximum of (7) can reached in any point of the ROC curve.
Nevertheless, one conclusion than we can obtain here, and that is
also the answer to the third question, is that the value of α, the PFA
of the sensor, is fixed locally for obtaining the maximum discrim-
ination, independently of the rest of the parameters of the sensor
network.

For Bayes tests, the minimum of (5) is equivalent to the maxi-
mum of

C(H1, H0)

ρ
=

−πR
2

8<
:

ln
“

r2

0

R2

“
(1−β)s0

αs0−1 + βs0

(1−α)s0−1

”
+

“
1 −

r2

0

R2

””
if R ≥ r0

ln
“

(1−β)s0

αs0−1 + βs0

(1−α)s0−1

”
if R < r0

(8)

where s0 is as in (4).
For fixed values of α, β and r0, (8) is a increasing function of

R2 for R ≥ r0 and an decreasing function of R2 for R < r0. So,
it achieves its maximum when R = r0.

Considering now fixed values of R and r0, finding the maxi-
mum of (8) is equivalent to finding the minimum of the function

Cb(α, β) =
(1 − β)s0

αs0−1
+

βs0

(1 − α)s0−1
(9)

that is a similar problem to finding the maximum of Lb(α, 1 − β)
in NP tests, in the sense that its minimum can be reached in any
point of the ROC curve of the sensor. Also, as in NP tests, the
values of α and β that minimizes (9) are independent of the rest of
the parameter, and also, as before, the problem of finding the pa-
rameters that minimizes the needed number of sensor per area unit
can be divided in two independent problems: the problem of deter-
mining the best exploration area, and the problem of determining
the best local decision parameters. The evaluation of different pd

functions corroborates these statements, but no results are shown
here due to space limitations.

7. CONCLUSIONS

In this paper we proposed to model the probability of detection
of each sensor, pd, as a function of the distance between the sen-
sor and the source or target to be detected. Based on that model,
we derived the LLR for the detection problem, the Bayesian fu-
sion rule and, under the asymptotic gaussianity of the LLR, the
Neyman-Pearson fusion rule. The probability of error of both test
were analyzed using Stein’s lemma (NP test) and Chernoff infor-
mation (Bayes test), and a simple parametric approximation to pd.

Using as a criteria of efficiency the minimum number of read
sensors per area unit to achieve a probability of error less or equal
that a given value, the analysis revealed two main facts. The first
is that the minimum area of exploration must cover the range of
the sensors. In the case of NP tests, there is no penalty for consid-
ering bigger areas. On the other hand, in the case of Bayes tests,
considering bigger exploration areas with the same density of read
sensors penalizes the error exponent. The second is that, for con-
figuring the sensors before deploying or before the reading, the
only information that it is needed is the function pd and the type of
global fusion rule (NP or Bayes). The rest of the parameters of the
sensor network does not compromise the performances, as well as
the local decision rule is configured for the greatest discrimination
between hypothesis.
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