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ABSTRACT

High resolution direction-of-arrival (DOA) estimation is one
of the most challenging problems in array signal processing.
In this paper, a variation of the Improved Polynomial Root-
ing (IPR) method is proposed for DOA estimation of mul-
tiple targets by a sensor array. The variation, Unitary IPR
(UIPR), transforms the complex-valued covariance matrix
of the sensor signals to a real-valued matrix using unitary
transformations. Then the IPR method is applied to deter-
mine the DOA of the targets. Simulation results indicate the
potential improvement provided by our approach compared
with MUSIC, Root-MUSIC, ESPRIT, and IPR.

1. INTRODUCTION

Over the last 30 years, direction of arrival (DOA) estimators
for sensor arrays have received considerable attention [7,
11]. These techniques are widely used in applications in
sonar, radar, radio, telecommunication, astronomy and strate-
gic defense operations. Recently, renewed interest was ex-
pressed in DOA for wireless communication applications
(e.g, smart antenna and mobile unit location detection [6]).

The general objective is to use sensor arrays to esti-
mate the number of distinct signals in the array’s volume
of surveillance, the directions of arrival (DOA) of these sig-
nals, and their carrier frequencies. There are several high
resolution methods such as MUSIC, Root-MUSIC, MIN-
NORM, ESPRIT and the IPR [1–3] designed for this pur-
pose. These methods often require singular value decom-
position (SVD) in the complex-valued signal subspace. The
resulting computations are often expensive, especially dur-
ing eigen-decomposition. Other methods, based on maxi-
mum likelihood principles, have narrower scope of appli-
cability because they depend on accurate target signal dis-
tribution function. To reduce the computational complexity
during eigen-decomposition, the unitary Root MUSIC [9]
and unitary ESPRIT [8] methods were proposed for DOA

estimation, using real-valued SVD.
In this paper, a variant of the IPR method is developed,

taking advantage of unitary transformations. In general, the
IPR method improves DOA estimation by using reduced or-
der characteristic polynomial rooting though Gaussian col-
umn reduction. The Unitary IPR method reduces the com-
putational complexity of IPR by using real valued SVD,
while maintaining the original precision. The rest of the
paper is organized as follows: section 2 discusses the array
signal model. Section 3 describes the IPR method. Unitary-
IPR method is proposed in section 4. Computer simula-
tions are presented in section 5, comparing UIPR with other
methods.

2. PROBLEM FORMULATION

Consider narrow-band signals emitted from q targets from
the far field. The signals are assumed to be wide sense sta-
tionary processes. They are impinging on an uniform linear
array (ULA) of p sensors with inter-sensor distance d.

The q target signals have a known carrier frequency ��.
The ith signal is emitted in (azimuth) directions �i, where
� � i � q and ��

� � �i � �
� . The output of the p sensors

(p � q), is modeled as the sum of the signals received from
the targets imbedded in additive white Gaussian noise. Let
Y �t� � Cp represent the output of the array where C is the
set of complex numbers. We model the array’s output as

Y �t� � A���S�t� � ��t�� (1)

where S�t� � Cq is a vector of the q target signals, ��t� �
Cp is a white Gaussian noise vector andA��� � �a����� ����
a��q�� is the p� q matrix of steering vectors. Specifically,

a��i� � �� e�j�
w�d

c
� sin �i � � � e�j�w��p���d

c
� sin �i �T � (2)

where d is the distance between two adjacent sensors, c is
the speed of wave propagation, and j �

p��.
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Assume that the signal S(t) has zero mean and the co-
variance matrix �s � E�S�t�Sy�t��, where Sy�t� is the
Hermitian conjugate of S�t�. The noise covariance matrix
is �n � E���t��y�t�� � ��Ip, where Ip is p � p identity
matrix. If the signals are statistically independent of each
other, as well as of the additive noise, the spatial correlation
matrix of Y �t� becomes,

� � E�Y �t�Y y�t�� � A�sA
y � ��Ip� (3)

We estimate the correlation matrix,�, by calculating

b� �
�

N

NX
t��

Y �t�Y y�t�� (4)

where N is the number of samples.
There exists [4] an orthogonal eigenvector matrixE and

a real diagonal eigenvalue matrix� such that

� � E�Ey� (5)

where � � diag���� � � � � �p�, �� � �� � � � ��p, and the

matrix of eigenvectors is E � �e� � � � eq
��� eq�� � � �ep�.

3. IMPROVED POLYNOMIAL ROOTING

Improved Polynomial Rooting (IPR) [1, 3] is an efficient
method to estimate DOA. Let En � �eq��� eq��� � � � ep�
be the matrix of noise eigenvectors, corresponding to the
p� q smallest eigenvalues of�. Through Gaussian column
reduction or Householder transformation, IPR reduces En

to the form

G �

�
BBBBBBBBBBBBB�

g��q�� � � � � �

g��q�� g��q��
� � � �

���
� � �

� � � �

gq���q�� gq���q��
� � � �gq���p

� �gq���q��
� � � gq���p

���
� � �

� � �
���

� � � � � gp�p

�
CCCCCCCCCCCCCA

p��p�q�

� (6)

The reduced polynomial rooting equation is given as,

g�z� �

q��X
i��

giz
i�� � �� (7)

where gi � �
p�q �gi�q�� � gi���q�� � � � � � gi�p�q���p�.

One can solve for exactly q roots zi from equation (7), and
the DOA �i is obtained from

�i � arcsin

�
Real

�
�c ln�zk�

j��d

��
� (8)

where � � i � q.

4. THE PROPOSED METHOD– UNITARY-IPR

A matrix � � Cp�p is called centro-Hermitian matrix [5]
if there exists a matrix Jp such that

� � Jp�
�Jp� (9)

where �� represents the conjugate of �, and J p is the ex-
change matrix,

Jp �

�
BBBB�

� � � � � �
��� � �

�
� �
�

�

� � � � � ���

� � � � � �

�
CCCCA

p�p

�

A forward-backward (FB) matrix [8] b�FB � Cp�p can
be derived from the estimated signal covariance matrix b�
as

b�FB �
�

	
�b�� Jp

b��Jp� � A
�Ay � ��Ip� (10)

where 
� � �
� ���D��Dy�, and

D � diagfe�j�w�d�p���

c
� sin �� � � � � � e�j�

w�d�p���

c
� sin �qg�b�FB is a centro-Hermitian matrix. Like any centro-

Hermitian matrices, b�FB can be transformed to a real-valued
(unitary) matrixL � Rp�p [8] using

L �Ky b�FBK� (11)

whereK is a matrix defined as:

K �

��������	
�������


�p
�

�
I p
�

jI p
�

J p

�
�jJ p

�

�
if p is even number

�p
�

�
B� I p��

�
� jI p��

�

�
p
	 �

J p��
�

� �jJ p��
�

�
CA if p is odd number.

To obtain the real-valued matrixL directly via the com-
plex valued covariance matrix b�, we have

L � Ky b�FBK

L �
�

	
�Ky b�K � �K��y b��K��

L � RealfKy b�Kg� (12)

L can be obtained from either equation (11) or equa-
tion (12). However, equation (12) is simpler because there
is no need to calculate b�FB explicitly.

Consider the real-valued eigen-decomposition of L

L � V�V y� (13)

where � � diag���� � � � � �p�; �i� i � �� � � � � p are the
eigenvalues of L; and �� � �� � � � ��p. Let V � ��� � � �
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�q
��� �q�� � � ��p� be corresponding the eigenvector matrix,

and V n � ��q��� �q��� � � � �p�.
b�FB and L are similar matrices in Eq.(11), and the

SVD of b�FB is,

b�FB � U�U y (14)

Equation (14) can be rewritten as �FBU � U�, and
we have,

K
y
b�FBKK

y
U � K

y
b�FBU

LK
y
U � K

y
U�

L � K
y
U�KU

y (15)

From equations (13) and (15), we have

V �Ky
U � (16)

or

U �KV � (17)

Hence,

Un �KV n� (18)

OnceUn is constructed, the IPR method can be used to
determine the DOA as described in section 3. The process
of the UIPR is summarized as follows.

1 Determine covariance matrixes b� from the
sensors’ observations

2 Obtain a real-value matrix L from Eq.(12)
3 Solve� and V from L
4 Obtain V n � �v� � � �vq��� from V
5 Calculate Un using Eq.(18)
6 Column reduceUn intoG (Eq.(6))
7 Sum the values in each column ofG

to obtain the value of gi
8 Solve the roots zk from the polynomial

equation (Eq.(7))with coefficients gi,
where � � i � q � � and � � k � q

9 Determine the DOAs by
�k � arcsin�Real�� c ln�zk�

j��d
��

The floating point operation cost for evaluating the eigen-
vectors and eigenvalues of b�FB directly is �p� multipli-
cations and �p� additions. If we use the real-value eigen-
decomposition (13), we need only p� multiplications and p�

additions. We thus gain �	
 computational cost efficiency.

5. SIMULATIONS

In order to demonstrate the potential of the UIPR method,
we simulated the DOA capability of a sensor array with
UIPR and comparedwith MUSIC, Root-MUSIC, TLS-ESPRIT
and IPR.

5.1. Comparisons of RMSE and FPOC vs SNR

Assume we have three uncorrelated targets of equal power
located at �� � ���o, �� � ��o and �� � ��o. Let
d � ��m (approximately equal to a half of the wavelength),
p � �� and �� � ���rad�s. We ran a simulation for
DOA calculation for 1000 times with the number of sam-
ples N � ���, and examined the accuracy and computa-
tional complexity of DOA estimation. The accuracy is de-
termined by Root Mean Square Error (RMSE), and com-
putational complexity is measured by number of Floating
Point Operation Counts (FPOCs).

The RMSE is plotted vs. SNR (from �	dB to �	dB)
in Fig. 1. The UIPR estimator shows improvement com-
pared to IPR and TLS-ESPRIT (e.g. 0.14 degree of the error
with UIPR at SNR=0 dB compared with 0.16 degree of er-
ror with TLS-ESPRIT). It is close to IPR, but achieves this
performance with much fewer calculation (Fig. 2). In fact it
is computationally superior to all alternatives
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Fig. 1. The RMSE vs. SNR performance of UIPR compared
to MUSIC, root-MUSIC, TLS-ESPRIT, and IPR(q � 
,
p � ��, and 200 snapshots)

5.2. Comparisons of RMSE and FPOC vs Number of
Sensors

We kept SNR=5dB and varied the number of sensors. We
show RMSE (Fig. 3) and FPOC (Fig. 4). The number of
sensors varies from 5 to 25. Again, UIPR shows a signifi-
cant computational improvement over other methods while
maintaining the error of direction estimation similar to IPR.
As expected, the FPOC increase as the number of number
of sensors increases.

6. CONCLUSION

We present a computationally efficent version of IPR for
DOA estimation, using unitary transformations. The poten-
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Fig. 2. The Floating Point Operation Counts vs. SNR per-
formance of Unitary-IPR compared to other methods(q � �,
p � ��, and 200 snapshots)
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Fig. 3. Comparison of RMSE vs. Number of Sensors (q=3,
SNR=5dB, 200 snapshots)

tial of the proposed algorithm is examined through com-
puter simulations.

It appears the UIPR method may be able to estimate
the DOA with less computational complexity than popu-
lar competing methods while maintaining comparable di-
rection accuracy.
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