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ABSTRACT

This paper focuses on the stochastic Cramer-Rao bound
(CRB) on direction of arrival (DOA) estimation accuracy
for non-circular Gaussian sources. We derive an explicit ex-
pression of the CRB for DOA parameters alone in the case
of non-circular complex Gaussian sources by two different
methods. One of them consists in computing the asymp-
totic covariance matrix of the maximum likelihood (ML)
estimator, and the other is obtained directly from an ex-
tended Slepian-Bangs formula. Finally some properties of
this CRB are proved.

1. INTRODUCTION

Deterministic and stochastic CRB’s play an important role
in array processing because the statistical performances of
numerous estimation methods are known to be comparable
to these bounds under certain mild conditions. Although the
deterministic CRB is known to be not achieved, the stochas-
tic CRB can be achieved asymptotically (in the number of
measurements) by the stochastic ML method. But all the
contributions on the stochastic CRB are dedicated to circu-
lar Gaussian distributions for which an explicit formula was
first derived in an indirect form using the asymptotic covari-
ance matrix of the ML estimator [1], [2]. Then this formula
has been directly proved from the complex circular Slepian-
Bangs formula in [4].

The importance of this circular complex Gaussian CRB
formula lies in the fact that under rather general conditions,
the circular complex Gaussian CRB matrix is the largest
CRB matrix, among the class of arbitrary circular complex
distributions with given mean and covariance matrices (see
e.g., [3, p. 293]). However non-circular complex signals
are frequently encountered in digital communications. For
example, binary phase shift keying and offset quaternary
phase shift keying are often used. But no closed-form ex-
pression of the CRB is available for these signals. Conse-
quently for such non-circular complex signals, we need an
upper bound of this CRB.

In this paper, we derive an explicit expression of the
stochastic CRB for the DOA parameter alone in the case

of non-circular complex Gaussian waveforms observed in
additive circular complex Gaussian noise.

2. DATA MODEL

We will be concerned with the signal model

� � � � � � �  � � � � � � � � � � �

where � � � � � �  ! # # # ! % represents the i.i.d. & -vectors of ob-
served complex envelope at the sensor output. � �' (  � � � � � ( * ,

is the steering matrix where each vector
( .

is parameterized by the real scalar parameter / .
. � � �

� 1 � !  � � � � � 1 � ! * � %
and  � model signals transmitted by 2

sources and additive measurement noise respectively. � �
and  � are multivariate independent, complex zero-mean. � is assumed circular complex Gaussian, spatially uncorre-
lated with 4 �  �  5� � � 7 89 : ; , while � � is non-circular com-
plex Gaussian distributed and possibly spatially correlated

or even coherent with = ? A B C� 4 � � � � 5� � and = E ? A B C� 4 � � � � % � � .
Consequently this leads to the covariance matrices of � � :

= H � J � � � = ? � 5 � 7 89 : ; and = EH � J � � � = E ? � % �

If no a priori information is available, � = H � J � � = E H � J � �
is generically parametrized by the N � 2 �

2 8 � 2 � 2 � � � � � real parameters J �
� J %  � J %

8 � %
with J  A B C� � /  � � � � � / * � %

and

J 8 A B C� � � P � ' = ? , S ! T � � V � ' = ? , S ! T � � P � ' = E ? , S ! T � �
V � ' = E ? , S ! T � �  X T Z S X * � � ' = ? , S ! S � P � ' = E ? , S ! S � �

V � ' = E ? , S ! S � � S �  ! # # # ! * � 7 89 \
%
.

3. INDIRECT DERIVATION OF THE STOCHASTIC
CRB FOR NON-CIRCULAR GAUSSIAN SOURCES

To derive the stochastic CRB of the parameter J  alone,
we consider the asymptotic covariance of the ML estima-
tor. We first note that the probability density function of �
considered as a ] & -variate real Gaussian RV is given by an
expression which is similar to that of the PDF in the circular
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case, provided it is expressed as a function of
�� � � �� � �

� � � .

� � � � 
 	 � � 
 � �� 	 � �  	 � � � � � � � � �� 	 � � � � � � � � � � �
�

�� � � � ��� �� �

where
� �� � � �� � � �� � �� �� 	 � �� � �� �� � � � ��  � �

with

� �� �  � � � 
 �
� 
 �� � �� " (1)

and �� � � ��  � $$ � � " . Then, classically (see e.g., [5],[1]),

after dropping the constants, the log-likelihood function can
be written as

$ � % � � % � 	 � � '
� & ' ) � � � � � � �� 	 � � * , � � � ��� � �� ( ) 	 * (2)

with � �� ( ) � � �� �) . ) � + � �� � �� �� where the parameters % � and
% � are imbedded in the covariance matrix � �� . In (2), � ��
depends on � �� , which is structured via (1). Due to these
constraints, the ML estimation of � % � � % � 	 becomes a con-
strained optimization problem which is not standard. De-
spite this difficulty, we prove in the following that the ML
estimate of the DOA parameters % � and source and noise
covariance parameters % � may be obtained in a separable
form.

Result 1 If the sample covariance matrix � �� ( ) is positive
definite, the joint ML estimates which maximize the log-
likelihood function (2) subject to the constraints (1) are
given by the following:1% � ( 2 4 is obtained by the minimizing with respect to % �5 ) � % � 	 � ' ) � � � � � �� 1� �� ( 2 4 �� � � 1 � �� ( 2 4  � � 	 �

(3)

where
1� �� ( 2 4 and

1 � �� ( 2 4 are given by1� �� ( 2 4 � � �� � � % � 	 �� � % � 	 � � � �� � � % � 	
� � �� ( ) � 1 � �� ( 2 4  � � � �� � % � 	 � �� � � % � 	 �� � % � 	 � � �

(4)

which is structured as � �� and1 � �� ( 2 4 � �
0 � 1

* , : < => ? A C D � � ( ) E 2

Proof: Maximizing the log-likelihood (2) without any con-
straint on the Hermitian matrix � �� reduces to a standard
maximization problem. Its solution is given (e.g., in [5],
[1]) by the minimization of (3) where

1� �� ( 2 4 is given by (4)
and

1 � �� ( 2 4 by1 � �� ( 2 4 � �
� 0 � � 1

* , : < = �> ? A C D � �� ( ) E 2

Because � �� ( ) , �� � � % � 	 �� � % � 	 , then [ �� � � % � 	 �� � % � 	 � � �
and

� �� � � % � 	 �� � % � 	 � � � �� � � % � 	 are all partitioned of the

form  � G 	 � H 	
� H 	 � � G 	 � " , the expression (4) is also par-

titioned of this form. Finally, because < �> ? A C D � < > ? A C D $$ < > ? A C D " and � �� ( ) �  � � ( ) � 
 � ( )
� 
 �� ( ) � �� ( ) "

result 1 is proved.

Because the dimension of % that parametrizes our
model is fixed, it follows from the standard statistical the-
ory of ML estimator that the ML estimator of % � asymptot-
ically (in the number of measurements) achieves the CRB
for % � estimation. Consequently, an explicit expression of
the CRB of % � alone can be derived thanks to an asymptotic
analysis of the ML estimate of % � given by result 1. Thus,
by adapting the proof given in [1], the following result is
proved in [7].

Result 2 The normalized (i.e. for ' � � ) DOA-related
block of CRB for non-circular complex Gaussian (NCG)
sources is given by the following explicit expression:L N P RA C � � ��

� T 5 V X � < => X Z� � � � � � � � 
 � � ) � � � ���  � � �� � � [ �� " � ) \ ^ � �
(5)

with X � � �� ` > ? A C D` A C .

Remark: We note that for circular complex Gaussian (CG)

sources, � 
 � � $ and � �� �  � � $$ � �� " . Consequently

(5) reduces toL P RA C � � ��
� T 5 V X � < => X Z & � � � � � � �

� � � � *
) c e � �

indirectly derived in [1], [2], then directly derived from the
circular complex Stepian-Bangs formula in [4].

The next result compares the CRBs
L N P RA C and

L P RA C as-
sociated with sources with the same first covariance matrix

� � .
Result 3 The DOA-related block of CRB for non-circular
complex Gaussian sources is upper bounded by the asso-
ciated CRB for circular complex Gaussian sources corre-
sponding to the same first covariance matrix � � .L N P RA C g L P RA C 2 (6)

Proof: First, from [1, lemma A.4], we have h � � h � j $
with h � � � �� � � � � � � � 
 � � ) � � � ���  � � �� � � [ �� " and
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� � � � �� � � 	 � � � �
 	 � � and this inequality applies to

the transpose of these matrices: � � � � � �
� � � . Then,

because � � � � �� � � � 	
 � � � , we have thanks to a
standard result of linear algebra (see e.g., [3, Appendix
A, result R.19], � � � � � � � � � �

� � � � . This inequality
is extended to the associated real symmetric matrices

� � � � � � � � � � � � � � � � �
� � � � , then by inversion� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � .

In the particular case of one source, we prove the fol-
lowing:

Result 4 The CRB of � � for a non-circular complex Gaus-
sian source decreases monotonically as the non-circularity
rate increases and is given by the expression

	 � � �
 � � �
� � � �  � �� � � � � � � �  � �� � � � � � � � � � � � � � � �

� � � � �  � � � � � � � � � � � �  � � � � � �
(7)

where the non-circularity rate � � is defined by � � � � " � � �
� � � % � � � � � � " � � and satisfies � � � � � � . The SNR is de-

fined by  � � � �� � ��� �� and � � is the purely geometrical factor

� � � � � � 	� � � � � with
� � � � � �� � � �� 
 � .

Proof: First, note that the structure of the inverse of � �
in (5) is preserved, i.e. � � �� � �   �

 � �  � � with  �
� �  � � � � � � �

� � � � � �
and  � � �  � � � � � �

. With

�  � ' � � � � � � � � ' �* + , and � � � ' � � � � � % � � � � � � � , (7) fol-
lows thanks to straightforward but tedious calculations. The
monotony of

	 � � �
 � with � � is proved in [7].
Consequently for one source, the CRB decreases from	 
 � � �! � # � � � � �$ � � $ � # � � ( � � � � , circular case) to

	 
 � �
�! � # � � � � �

� $ � � $ � # � � ( � � � � , unfiltered BPSK case).

4. DIRECT DERIVATION OF THE STOCHASTIC
CRB FOR NON-CIRCULAR GAUSSIAN SOURCES

To directly prove result 2 from the Fisher information ma-
trix, we first extend the circular complex Gaussian Slepian-
Bangs formula [3, rel. B.3.25] to non-circular complex
Gaussian distribution. This extension is proved in [7] and
takes the following form:

� + & � / " ' � �
�

� ! � ( � �
( � / � � �� ( � �

( � ' � � �� � 0

Second, we note that thanks to the proof of result
1, the constrained ML estimate of 1 � coincides
with the unconstrained ML estimate of 1 � . Con-
sequently the associated CRBs of 1 � coincide for

these two models. Using the unconstrained model, let

1 � � 1 � � 2 1 �
� � �

with here 1 � � � �� � ) � 2 ' �* � �
where ) � � ��

� � � � 6 � �� 7 % " 9 � 2 ; � 6 � �� 7 % " 9 � 2 � � 6 � < �� 7 % " 9 � 2 ; � 6 � < �� 7 % " 9 � � � > 9 ? % > @ 2
� 6 � �� 7 % " % 2 � � 6 � < �� 7 % " % � 2 ; � 6 � < �� 7 % " % � � % C � " E E E " � @ � �

. With this un-
constrained model, we can follow along the lines of the
derivation given in [4] where �  � 	 � � 	 � � ' �* + , is
replaced here by � � � "	 � �� "	 � � ' �* + � , because the
key point of the derivation, i.e. the relation * # + � � �� � � , )
where , is a constant nonsingular complex matrix is pre-
served. And rel. (5) is proved in [7] thanks to slight modifi-
cations of the direct derivation given in [4].

5. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate results 2, 3
and 4 and to compare these CRBs to the CRB associ-
ated with BPSK distributed sources. We consider through-
out this section one or two independent and equipowered
sources with identical non-circularity rate for which the
non-circularity rate � /

and the circularity phase - /
are

defined by � � � � " / � � � / � % � 0
� � � � " / � . These sources im-

pinge on a uniform linear array of J sensors for which� / � � � 2 � % 
 0 2 0 0 0 2 � % $ , � � % 
 0 � �
with � / � & 4 6 ' � � / � .

The first experiment illustrates results 2 and 3. We
consider two non-circular complex Gaussian sources with

J � 8 and 9 ; = � � � > @ . Figs.1, 2 and 3 exhibit the
dependence of � ( � � �) � � $ � " � % 1 with the non-circularity rate� � � � � , the circularity phase separation - � � - � and
the DOA separation � � � � � , respectively. Fig.1 shows
that � ( � � �) � � $ � " � % decreases as the non-circularity rate in-
creases (this extends to two equipowered sources result 4
proved in the one source case). Furthermore this decrease
is more prominent for low DOA separations. Fig.2 shows
that � ( � � �) � � $ � " � % is sensitive to the circularity phase sepa-
ration for low DOA separations. And Fig.3 illustrates the
inequality (6) of result 3. It shows that the difference be-
tween these two values is very sensitive for very low DOA
separations only. Fig.4 compares the non-circular complex
Gaussian CRB

( � � �) � with the non-circular complex Gaus-

sian CRB
( � � � �) � under the a priori information that the two

sources are independent 2 given in [6] by a closed-form ex-
pression. Fig.4 shows that this a priori information is quite
informative, but this information gain decreases as the non-
circularity rate increases. This is particularly prominent for
low DOA separations.

The second experiment illustrates result 4 where a non-
circular complex Gaussian source and J � C are consid-

1All the CRBs are computed for D E F . That means that the actual
CRBs associated with the signal model defined in section 2 are obtained
from the results given in this section by dividing by D .

2We note that the explicit expression (5) does not take account of this
a priori information because it has been derived without any constraint onG H

and
G J H .

II - 255

➡ ➡



ered. Fig.5 shows that the CRB decreases monotonically as
the non-circularity rate increases but it is relatively insensi-
tive to the increase of � � , except for very low SNR (i.e. for

� � � � � � � � � ).
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