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ABSTRACT 

The most common methods for location of 

communications or radar transmitters are based on 

measuring a specified parameter such as signal Angle-of-

Arrival or Time-of-Arrival. The measured parameters are 

then used to estimate the transmitter location. These 

methods are sub-optimal since they are indirect and 

involve two separate estimation steps. We propose a 

technique that uses exactly the same data as the common 

methods but the estimation of location is based on 

Maximum-Likelihood and the location determination is 

direct. Although there are many stray parameters, 

including the attenuation coefficients and the signal 

waveform, the method requires only a two-dimensional 

search. Monte-Carlo simulations indicate that the 

accuracy is superior to Angle-of-Arrival, Time-of Arrival 

and their combination  

1. INTRODUCTION 

The problem of emitter location attracts much interest in 

the Signal Processing, Vehicular Technology and 

Underwater Acoustics literature. Defense oriented 

location systems have been reported since word war I. 

Perhaps the first paper on the mathematics of emitter 

location, using Angle-of-Arrival (AOA), is due to 

Stansfield [1]. Many other publications followed 

including a fine review paper by Torrieri [2]. The papers 

by Krim and Viberg [3] and Wax [4] are comprehensive 

review papers on antenna array processing for location by 

AOA. Recently, Van-Trees [5] published a book on Array 

Processing. Positioning by Time-of-Arrival (TOA) is well 

known in radar systems [6], and in underwater acoustics 

[7]. In underwater acoustics Matched-Field Processing 

(MFP) is viewed as a promising procedure for source 

localization [8]. MFP can be interpreted as the Maximum 

a Posteriori (MAP) estimate of location given the 

observed signal at the output of an array of sensors [8,9]. 

Other interpretation of MFP is the well-known beam-

forming applied to wide or narrow bandwidth signals, 

non-planar wave field and unknown environmental 

parameters. 

In this correspondence we discuss a method that have 

some similarities with matched field processing. While the 

concept is similar the details are different. The models of 

underwater acoustic propagation are usually more 

complex than the models used in most AOA/TOA 

electromagnetic emitter location papers. Hence, the 

required processing for traditional matched-field 

processing is rather heavy. Moreover, the underwater 

sources distance from the sensors is usually the same 

order of magnitude as the sensor array size. Hence, the 

far-field assumption that is usually used in 

electromagnetic AOA does not hold for MFP.  

The Direct Position Determination (DPD) method that we 

propose takes advantage of the rather simple propagation 

assumptions that are usually used for Radio Frequency 

(RF) signals. This enables us to obtain a simple, closed 

form, cost function. The cost function can be maximized 

using a two-dimensional search for an emitter known to 

be located on a plane or a three-dimensional search in 

general. The DPD belong to the least squares family if the 

noise statistics are unknown. If the noise is Gaussian, 

DPD is the Maximum Likelihood estimate of location. We 

demonstrate that DPD outperforms AOA, TOA and the 

combination of AOA and TOA. The DPD technique 

requires the transmission of the received signals (possibly 

sampled) to a central processing location. However, AOA 

and TOA require only the transmission of the measured 

parameters to the central processing location. This is the 

cost of employing DPD. The paper focuses on the single 

signal case. Extensions to multiple signals are published 

in a companion paper [10]. 

2. PROBLEM FORMULATION AND ALGORITHM 

Consider a transmitter and L base stations intercepting the 

transmitted signal. Each base station is equipped with an 

antenna array consisting of M elements. Denote the 

transmitter position by the vector of coordinates, p, and 

the l-th base station position by the vector of coordinates 

II - 2490-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



lq . The signal observed by the l-th base station array is 

given by  

0( ) ( ) ( ( ) ) ( );l l l l lt b s t t tr a p p n (1)

where ( )l tr  is a time-dependent 1M  vector, lb  is an 

unknown complex scalar representing the channel effect 

(attenuation), ( )la p is the l-th array response to signal 

transmitted from position p, and 0( ( ) )ls t tp  is the 

signal waveform, transmitted at time 0t and delayed by 

( )l p .  The vector ( )l tn  represents noise and 

interference, including multipath observed by the array. 

The sampled version of the signal in (1) is given by 
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We observe that information about the transmitter position 

is embedded in the observed signal in 2 different ways. 

The first is the array response. If the signal is in the far 

field (more than 10 times the array aperture) the array 

response becomes a function of the angle of arrival only. 

The position is also reflected by the time of arrival of the 

signal at the array ( )l p , which depends on the distance 

between the transmitter and the station. Taking the 

Discrete Fourier Transform (DFT) of (2) we get 
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where the over-bar indicate the DFT coefficient of the 

corresponding time samples. 

The least squares estimate of the position is given by 

minimizing the cost function 
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where  stands for the Frobenius norm. Note that the 

cost function can be represented by a sum over L terms as 

follows, 
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Define the following vectors, 
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where  stands for the Kronecker product. Now equation 

(5) can be represented by  
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The estimate of lb that minimizes the cost function is 

given by 
1
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Without loss of generality we assume that 

2 2
1; ( ) 1;l l ls a p                  (9) 

Substituting equations (8) and (9) in (7) we get  
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Instead of finding the minimum of ( )Q p we can find the 

maximum of ( )Q p  defined by 
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Define the vectors  
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Using these definitions we can rewrite (11) as 
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Under the common assumption that the signal waveform 

is not known to the receivers the cost function in (13) is 

maximized by selecting the vector s  as the eigenvector 
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corresponding to the largest eigenvalue of the matrix D.

Hence, equation (13) reduces to 

max( ) ( )Q p D                                             (14) 

where the right side of (14) denotes the largest eigenvalue 

of D, and the matrix D is a function of the data, the array 

response at each base station, the location of the base 

stations and the unknown emitter location p.  It is clear 

that the maximization of (14) requires only a two-

dimensional (or three dimensional) search although the 

estimator knows neither the channel response nor the 

signal. It is interesting to note that the dimensions of the 

matrix D are s sN N which might be rather large for 

some cases. However, we can replace D with the L L

matrix D  where, 

1[ , ]L
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H

U d d
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                                            (15) 

Thus, equation (14) becomes 

max( ) ( )Q p D                                             (16) 

This result holds for a single observation of the signal for 

a period equivalent to sN samples. Extension to multiple 

observations of the signal is straightforward. 

In the case that the receivers know the signal waveform 

(e.g., training signal or a synchronization signals are 

known to the receivers) we return to equation (13) and 

rewrite it as follows, 
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The unknowns are the transmit time, 0t , and the emitter 

position, p. For any given p we can estimate 0t by a one-

dimensional search or by FFT of the columns of U . If we 

choose the later method we get the following cost 

function, 
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Figure 1: RMS, Mean, 67%, 95% of miss distance for 

4 different methods, unknown signal 

Stated in words, perform FFT on each of the columns of 

U , sum the squared absolute value of the Fourier 

coefficient over the L results to obtain the vector w. The 

length of w corresponds to the FFT length, which may be 

a multiplicity of sN  depending on the desired resolution.

The maximum element of w is the desired cost function.  

3. NUMERICAL RESULTS 

In order to examine the performance of the advocated 

method and compare it with the traditional approaches we 

performed extensive Monte-Carlo simulations. Some 

examples are shown here. Consider 4 base-stations placed 

at the corners of a 4 Km 4 Km square. Each base-

station is equipped with a circular array of 5 antenna 

elements. The radius of the array is one wavelength. The 

transmitter location is selected at random, uniformly, 

within the square formed by the base-stations. Each 

location determination is based on 32 samples of the 

signal. The SNR is varied between –10 dB and +10 dB. 

At each SNR value we performed 100 experiments in 

order to obtain the statistical properties of the 

performance. The path-loss attenuation magnitude is 

selected at random using normal distribution (mean=1, 

std=0.1) and the attenuation phase is uniformly distributed 

in [ , ] . We applied 4 different techniques in order to 

locate the transmitter: 

1. Angle of Arrival estimation using Maximum 

Likelihood (also known as beam-forming) and 

Maximum Likelihood emitter location estimation 

using the AOA estimates as the data. 
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2. Time of Arrival estimation using Maximum 

Likelihood (under the assumption that the signal 

waveform is known at the base stations and using all 

antenna elements) and Maximum Likelihood emitter 

location estimation using the TOA estimates as the 

data.

3. Maximum Likelihood emitter location estimation 

using both AOA and TOA as the data. 

4. Direct Position Determination (DPD) according to 

equation (16). 

The performance evaluation is based on the statistics of 

the miss distance i.e., the distance between the true emitter 

position and the estimated emitter position. 

We used 4 different criteria: 

1. Root Mean Square (RMS) of miss distance 

2. Mean of miss distance 

3. Miss distance that upper bounds 67% of the errors 

4. Miss distance that upper bounds 95% of the errors 

All the plots in Figure 1 indicate that DPD is superior to 

AOA, TOA and even combined AOA and TOA. The 

advantage of DPD is at low SNR. At high SNR all 

methods give excellent results. Figure 2 show similar 

results for known signal. 

4. CONCLUSIONS 

We have proposed a direct position determination 

technique that outperforms AOA, TOA and their 

combination. The DPD is closely related to matched-field 

processing but it is suitable only for Radio Frequency 

signals and not for underwater emitter location. Further 

research is currently underway that explores the 

advantages and disadvantages of the proposed method for 

multiple signals and more complex propagation models. 

Small error analysis, threshold prediction and comparison 

with the Cramer-Rao bound will be published in the near 

future.  
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Figure 2: RMS, Mean, 67%, 95% of miss distance for 

4 different methods, known signal. 
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