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ABSTRACT
We consider the problem of Maximum Likelihood estimation of
Directions of Arrival of multiple source signals in the presence
of unknown spatially correlated Gaussian noise. Oblique Projec-
tions are used to separate the structured noise from the signal and
an Approximate Maximum Likelihood solution is derived. The
estimates are obtained by maximizing the modified cost function
using a nonlinear optimization technique. Numerical simulations
are provided to assess the performance of the proposed approach.
Simulations include comparison to the Stochastic Maximum Like-
lihood and to the Weighted Subspace Fitting, as well as to the
Cramér-Rao Bound.

1. INTRODUCTION

Direction Of Arrival (DOA) estimation of multiple narrow-band
sources is well addressed in array signal processing. In the pres-
ence of spatially white Gaussian noise, many estimation techniques
have been developed [1, 2]. However, when the noise is not spa-
tially white, the classical techniques can be applied only if the data
is prewhitened by measuring the spatial noise covariance matrix,
under the conditions of large data sizes, high SNR and a stationary
noise covariance matrix. Failure to fulfill these conditions results
in highly biased estimates. When prewhitening is not possible, the
noise is modeled as a spatially dependent process with an unknown
covariance matrix. In this paper, we consider the problem of DOA
estimation in the presence of unknown spatially correlated noise,
modeled as a combination of a structured and an unstructured pro-
cess [3]. An Approximate Maximum Likelihood (AML) solution
is formulated where the dimension of the optimization problem is
reduced through the estimation of the unknown noise parameters
using Oblique Projections (OP). It is shown in Section 3 that the
range and null space of the considered OP are the unstructured
noise and signal with structured noise subspaces respectively.

2. DATA MODEL

Consider an array with K sensors, receiving d impinging source
signals from respective directions of arrival θ = [θ1, . . . , θd]T ,
where (.)T denotes matrix transpose. The sensor data output is
written in vector form as

x(t) = A(θ)s(t) + n(t); t = 1, · · · , T (1)

where
A(θ) =

[
a(θ1) · · · a(θd)

]

is the array spatial steering matrix, with a(θi) being the array re-
sponse to a path impinging from direction θi. It is assumed that the
parameterization of the array response vectors is known and that
no ambiguities are introduced in the manifold.

The signal waveform s(t) is modeled as a stationary stochastic
process, independent of n(t), with zero mean and covariance ma-
trix S. The noise n(t) is modeled as a combination of two parts.
The first part, w(t) is an unstructured noise generated internally
by the electronics in the receiver. The second part is an exter-
nal structured noise z(t), resulting from processing an unknown
process v(t) through a known linear system B ∈ C

N . This lin-
ear process can be regarded as a set of N base matrices spanning
the noise subspace (structured). The dimension of B is therefore
K × N , with K ≥ N . Hence we can model the additive noise as

n(t) = z(t) + w(t) (2)

= Bv(t) + w(t) (3)

Also, the following assumptions on the noise are considered

E[n(t)nH(t)] = Qδtk

E[n(t)nT (t)] = 0 (4)

where E(.) denotes expectation, (.)H denotes Hermitian transpose
and Q is the spatial noise covariance matrix which, in the general
case, can be modeled as

Q =

⎡
⎢⎢⎢⎣

q0 q1 · · · qK−1

qH
1 q0 · · · qK−2

...
...

. . .
...

qH
K−1 qH

K−2 · · · q0

⎤
⎥⎥⎥⎦ (5)

where q0 = σ2 is the unstructured noise power. The (2K − 1)-
dimensional vector of unknown noise parameters is therefore given
as q = [q0,�(q1),�(q1), . . . ,�(qK−1),�(qK−1)]

T .
The data covariance matrix can be written as

R = ASAH + Q (6)

Note that the dependence of A on θ is omitted for simplicity. The
problem at hand is to estimate the parameters θ from the collected
data, using the known structure of the noise.
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3. APPROXIMATE ML ESTIMATION

In (1), the collected data x(t), t = 1, . . . , T is modeled as a zero
mean random processes with covariance matrix (6). Thus, the joint
density function of the data is given by [4]

fη = (2π)
− T

2 det

{
R

− T
2
(η)

}
exp

{
−T

2
trace

[
R−1(η)R̂

]}
(7)

where η = [θT ,pT ,qT ]T is the vector of unknown parameters,
with p = [�(S),�(S)] and R̂ is the sample covariance matrix of
the data, given by

R̂ =
1

T

T∑
t=1

x(t)xH(t) (8)

After normalization and omitting constant terms, it can be easily
shown that the stochastic negative Log-Likelihood (LL) function
of the observed data is [4]

L(η) = ln {det [R(η)]} + trace
{
R−1(η)R̂

}
(9)

After some straightforward manipulations, the ML estimate of the
covariance matrix S is given by [5]

Ŝ(θ,q)=(AHQ−1A)−1AHQ−1(R̂ − Q)Q−1A(AHQ−1A)−1

(10)
and the insertion of (10) in (6) leads to the following concentrated
expression

R(θ,q) = Π(θ,q)(R − Q)ΠH(θ,q) + Q (11)

where Π(θ,q) = A(AHQ−1A)−1AHQ−1. Note that using the
concentrated expression of the data covariance matrix (11) in the
LL function (9) reduces the dimension of the optimization search.
However this direct optimization remains unattractive as the de-
pendence between the unknown parameters involves high nonlin-
earities. At this stage, we seek a further simplified cost function by
replacing Q by a favorable estimate Q̂. Note that since the struc-
tured noise part is uniquely parametrized by a given process B,
matrix Q exhibits a unique dependence on B. As mentioned pre-
viously, this process can be seen as the result of a linear expansion
of the noise subspace and truncation after the N most significant
terms, with the truncation error being taken care of in the unstruc-
tured part whose asymptotic properties are known.

Let the data vector x(t) defined in (1) be written in the follow-
ing form

x(t) = As(t) + Bv(t) + w(t)

=
[

A B
] [

s(t)
v(t)

]
+ w(t) (12)

Provided that the composite matrix
[

A B
]

has full rank, and
d + N ≤ K, the zero forcing solution of equation (12) is given by[

ŝ(t)
v̂(t)

]
=

[
A B

]†
x(t) (13)

where (.)† stands for Moore-Penrose pseudo-inverse. Using ma-
trix properties, equation (13) can be rewritten as[

ŝ(t)
v̂(t)

]
=

[
AT A AT B
BT A BT B

]−1 [
AT

BT

]
x(t)

= H−1

[
AT

BT

]
x(t) (14)

Recalling that the LL function is to be concentrated with respect
to the noise parameters, we focus on the estimation of v̂(t). Ap-
plying the inversion formula of 2× 2-block matrices, H−1 can be
expressed as

H−1 =

[
H1 H2

H3 H4

]
(15)

with

H1 = A−1 − A−1C
[
CT A−1C − B

]−1
T A−1

H2 = A−1C
[
CT A−1C − B

]−1

H3 =
[
CT A−1C − BT

]−1 CT A−1

H4 = −
[
CT A−1C − B

]−1

where A = AT A, B = BT B and C = AT B. Thus, v̂(t) is
obtained as

v̂(t) = (H3A
T + H4B

T )x(t) (16)

or equivalently, using the expressions of H3 and H4 and after ap-
plying some algebraic manipulations,

v̂(t) = (P⊥
AB)†x(t) (17)

where P⊥
A is the orthogonal projector onto A.

Using the known structure B, the estimated structured noise is

ẑ(t) = Bv̂(t)

= B(P⊥
AB)†x(t)

= EBAx(t) (18)

where EBA is the Oblique Projector (OP) with range 〈B〉 and null
space 〈A〉 , [6]. Similarly, the OP with range 〈A〉 and null space
〈B〉 is given as

EAB = A(P⊥
B A)† (19)

By neglecting the component of the unstructured noise belong-
ing to the subspace 〈A〉 1. w(t) can be considered to belong to
the subspace 〈N〉 that is orthogonal to both subspaces 〈A〉 and
〈B〉. This noise subspace can be estimated using the following al-
gebraic property I = PN + PAB, where PAB = EAB + EBA,
is the projector onto the space shared by 〈A〉 and 〈B〉 and PN is
the projector onto the subspace 〈N〉. Thus, exploiting this orthog-
onality, an estimate of w(t) can be obtained as

ŵ(t) = PNx(t)

= (I − PAB)x(t)

= P⊥
ABx(t) (20)

and the estimated noise covariance matrix is

Q̂(θ) = Rẑẑ + Rŵŵ

= EBAREH
BA + P⊥

ABRP⊥H
AB (21)

Under asymptotic conditions, replacing the covariance data
matrix R by the sample covariance matrix R̂ and inserting (21)
in (10), we obtain the following approximation

R̃(θ) = Π̂(θ)(R̂ − Q̂)Π̂
H

(θ) + Q̂ (22)

1Note that the unstructured noise can be assumed orthogonal to sub-
space 〈B〉 without loss of generality since the component of w(t) that
would belong to 〈B〉 can be included in the model of v(t)
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Fig. 1. Comparison of AML-OP, SML and WSF vs SNR. T =
200, K = 10, ρ = 0.98.

where Π̂(θ) = A(AHQ̂−1A)−1AHQ̂−1. Thus, the modified
LL cost function becomes

L(θ) = ln
{

det
[
R̃(θ)

]}
+ trace

{
R̃−1(θ)R̂

}
(23)

Finally, estimation of the parameters reduces to solving the follow-
ing optimization problem

θ̂ = arg min
θ

{L(θ)} (24)

In order to achieve convergence, the algorithm requires favorable
initial parameters. One way among others to initialize the algo-
rithm is to use a standard estimator such as ROOT-MUSIC [7].
We use a quasi-Newton algorithm to solve the optimization prob-
lem in (24) using the scoring technique [8] with a mixed quadratic
and cubic line search procedure.

4. SIMULATION RESULTS

We use the following simulation scenario: assume a radar work-
ing in passive mode (only one set of snapshots is provided). The
array is simulated as a Uniform Linear Array (ULA). Two imping-
ing signals corresponding to two targets situated respectively at
θ1 = −3◦ and θ2 = 1◦ with different Doppler frequencies and
T samples are collected at each sensor. We illustrate the global
performance of the proposed approach in terms of the Root Mean
Square Error (RMSE) versus the Signal to Noise Ratio (SNR), the
spatial correlation coefficient ρ, the number of collected snapshots
T and the number of sensors K. We compare the performance of
the proposed AML-OP approach versus SML and WSF [9] tech-
niques where the noise is assumed white Gaussian and the Cramér-
Rao Bound (CRB). The parameter set is indicated in the figure
captions. The results are averaged after 200 Monte Carlo runs. As
the performance is similar for the two DOAs, only the first DOA
results are shown.

Figure 1 illustrates the performance of AML-OP, WSF and
SML in terms of RMSE. As expected, the AML-OP performs bet-
ter than the other techniques, especially at low SNR.
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Fig. 2. Comparison of AML-OP, SML and WSF vs correlation
coefficient. T = 200, K = 8, SNR = 0dB.

Figure 2 shows the variation of the RMSE with the coefficient
of correlation ρ. As the correlation coefficient increases, AML-
OP outperforms the other methods as the correlation in the noise
is taken into account. For low value of ρ, the other techniques suit
better the uncorrelated model. The AML-OP clearly outperforms
the two other approaches only at ρ greater than to 0.4.

Figure 3 illustrates the performance as we increase the num-
ber of antenna sensors. As the structured model is accounted for,
AML-OP exhibits high performance.

Figure 4 shows the improvement of the performance as the
number of collected data is increased while keeping the remaining
parameters constant during simulation. Similar remarks as previ-
ously are noted.

5. CONCLUSION

In this paper, an AML estimator for DOA retrieving in the presence
of structured and unstructured noise is proposed. The proposed
approach uses an Oblique Projection to provide an estimate of the
noise covariance matrix. Simulated data examples are provided to
assess the performance of the AML-OP and to illustrate its rela-
tive superiority over two other techniques (SML, WSF) where the
structure of noise is not taken into account.

6. APPENDIX
CRAMÉR-RAO BOUND

Considering the covariance matrix of the received data

R(η) = A(θ)SAH(θ) + Q

then the (i, j)-th element of the Fisher Information Matrix (FIM)
is

F i,j = trace

{
R−1

[
∂R(η)

∂ηi

]
R−1[

∂R(η)

∂ηj

]

}
(25)

i, j = 1, 2, · · · , d2 + d + 2K − 1 (26)

Let G = A(θ)
′
, where (.)

′
stands for differentiation with respect

to the individual parameters. Using the results in [10], [11], the
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Fig. 3. Comparison of AML-OP, SML and WSF vs number of
antennas. T = 200, ρ = 0.9, SNR = 5dB.

expressions of the (i, j)-th element of the FIM for the parameters
of interest θ is given by

F i,j =
[
2�

{
trace

{
(G̃HP⊥

A G̃)i,j(SÃHR̃−1ÃS)i,j

}}

−HIHT
]

(27)

where Ã = Q−1/2A, G̃ = Q−1/2G, R̃ = Q−1/2RQ−1/2, and
the real matrices H and I are defined as follows

H = 2�
{

(R̃−1ÃS)T � (G̃HP⊥
Ã )

}

and

I =
{

(R̃−1)c � R̃−1 − (PÃR̃−1)c � (PÃR̃−1)
}−1

respectively, with (.)c denoting complex conjugate.
The closed-form expression of the CRB for the parameters

CRBθ =
[
2�

{
trace

{
(G̃HP⊥

Ã G̃) � (SÃHR̃−1ÃS)
}}

− HIHT
]−1

(28)
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