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ABSTRACT

We study the problem of direction-of-arrival (DOA) estimation us-
ing partly calibrated arrays composed of multiple subarrays with
unknown inter-subarray parameters and imperfectly known subar-
ray orientations. The recently developed spectral and root vari-
ants of the rank reduction estimator (RARE) can handle scenar-
ios where no calibration between subarrays is available but, un-
fortunately, they are very sensitive to subarray orientation errors.
Therefore, conventional RARE can be applied to such partly cal-
ibrated arrays only if all subarray misorientations are negligibly
small. In this paper, we develop a new modification of RARE
which improves its robustness against subarray misorientations.
The performance of the proposed robust RARE algorithm is dem-
onstrated to be close to the stochastic Cramér-Rao bound (CRB)
of the considered estimation problem.

1. INTRODUCTION

The problem of DOA estimation in large subarray-based sensor
arrays has recently attracted a significant attention of specialists
because using subarrays on a sparse grid extends the array aperture
without a corresponding increase in hardware and software costs
[1]-[5].

In the case when each particular subarray is calibrated but
there is no calibration between subarrays (i.e., all inter-subarray
parameters are unknown), the recently developed RARE algorithm
can be used to estimate the signal DOAs. In the most general
setting when all subarrays have arbitrary geometries, the spectral
RARE technique [3]-[4] can be used. In the particular case of lin-
ear identically oriented subarrays whose interelement spacings are
integer multiples of the known shortest baseline, the root-RARE
algorithms [5]-[6] can be applied1.

A serious shortcoming of both the spectral and root-RARE
algorithms is that they are very sensitive to array orientation errors.
In practical situations, such subarray misorientations may easily
occur [7], [8].

In this paper, we develop new spectral and root modifications
of the RARE algorithm that are robust against array orientation er-
rors. We also study the identifiability conditions that guarantee the
uniqueness of DOA estimates. Our simulation results validate the
robustness of the proposed techniques and demonstrate that their
performances are close to the stochastic CRB that corresponds to
the estimation problem considered.

1Note that root-RARE is a search-free algorithm and, because of this,
its computational cost is substantially lower than that of spectral RARE.

2. RARE ALGORITHM

Assume that an array of M omnidirectional sensors consists of
K arbitrary non-overlapping subarrays. Let the kth subarray have
Mk ≥ 1 sensors, so the total number of sensors in the array is
given by M =

∑K

k=1
Mk. Assume that the array receives L < M

narrowband signals from multiple far-field sources. In this section,
we assume that each subarray is fully calibrated while the inter-
subarray displacements may be unknown or uncertain.

The array snapshots can be modeled as [6], [3]

x(t) = A(θ, α)s(t) + n(t), t = 1, · · · , N (1)

where

A(θ, α) � [a(θ1, α),a(θ2, α), · · · ,a(θL, α)] (2)

is the M ×L direction matrix, a(θ, α) is the array steering vector,

θ = [θ1, θ2, · · · , θL]T (3)

is the L × 1 vector of the source DOAs, α is the K × 1 vector
of unknown inter-subarray parameters, s(t) is the L × 1 vector
of signal waveforms, n(t) is the M × 1 vector of white circular
complex Gaussian noise, N is the number of snapshots, and (·)T

denotes the transpose. The basic idea of the RARE algorithm is to
model a(θ, α) as the product of a known matrix V(θ) and an un-
known vector h(θ, α) associated with the unknown inter-subarray
parameters [3], [4]

a(θ, α) = V(θ)h(θ, α) (4)

where

V(θ) =

⎡
⎢⎢⎢⎣

v1(θ) 0 · · · 0

0 v2(θ) · · · 0
...

...
. . .

...
0 0 · · · vK(θ)

⎤
⎥⎥⎥⎦ (5)

and vk(θ) is the Mi × 1 steering vector of the kth subarray. The
unknown vector h(θ, α) may take different forms, depending on
the type of inter-subarray uncertainty considered (see [3]-[5] for
details).

Substituting the steering vector model (4) to the MUSIC equa-
tion [9]

a
H(θ, α)GG

H
a(θ, α) = 0 (6)

we have [3]
h

H(θ, α)C(θ)h(θ, α) = 0 (7)

where C(θ) is the K × K matrix defined as

C(θ) = V
H(θ)GG

H
V(θ) (8)
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G is the M × (M − L) matrix of the noise-subspace eigenvec-
tors of the array covariance matrix R = E{x(t)xH(t)}; and (·)H

denotes the Hermitian transpose.
Since h(θ, α) �= 0, equation (7) can hold true only if C(θ)

drops rank (i.e., det{C(θ)} = 0) and this property suggests the
basic RARE criterion used for DOA estimation. It is worth not-
ing that C(θ) does not depend on any of unknown inter-subarray
parameters α. It has been shown in [6] and [4] that under certain
mild conditions, the rank of C(θ) drops (i.e., rank{C(θ)} < K)
if and only if θ is equal to one of the source DOAs {θi}

L
i=1.

In practice, R is unknown and is replaced by its sample esti-
mate

R̂ =
1

N

N∑
t=1

x(t)xH(t) (9)

In this case, the DOAs are estimated from the L highest peaks of
any of the following two alternative estimators [3]-[5]

f1(θ) =
1

det{Ĉ(θ)}
(10)

f2(θ) =
1

L{Ĉ(θ)}
(11)

where

Ĉ(θ) = V
H(θ)ĜĜ

H
V(θ) (12)

is the estimate of C(θ); Ĝ is the M×(M−L) matrix of the noise-
subspace eigenvectors of R̂; and L{·} is the operator returning the
smallest eigenvalue of a Hermitian matrix.

The estimators (10) and (11) are based on one-dimensional
search over θ. In the particular case of linear identically oriented
subarrays whose interelement spacings are integer multiples of the
known shortest baseline d, a search-free polynomial rooting-based
reformulation of the RARE estimator is possible [6], [5]. In the
aforementioned particular case, rewriting the matrix Ĉ(θ) as a

function of z = ej 2π

λ
d sin θ gives

Ĉ(z) = V
T (1/z)ĜĜ

H
V(z) (13)

where λ is the wavelength. Using (13), it can be shown that the
DOAs can be obtained by rooting the following polynomial [5]

f(z) = det{Ĉ(z)} (14)

3. ROBUST RARE ALGORITHM

In this section, we assume that subarray orientations are known
imprecisely. In this case, the direct application of the RARE al-
gorithm is not possible, as each subarray itself is no longer fully
calibrated. In the presence of such subarray orientation errors, the
model (4) can be transformed as

a(θ, ζ) = V(θ, δθ)h(θ, ζ) (15)

where δθ = [δθ1, · · · , δθK ]T ; δθk is the orientation error of the
kth subarray; and ζ = [α, δθ ]T is the vector containing all un-
known array parameters.

In this case, the M × K direction matrix V(θ, δθ) takes the
form

V(θ, δθ) =

⎡
⎢⎣

v1(θ + δθ1) · · · 0
...

. . .
...

0 · · · vK(θ + δθK)

⎤
⎥⎦ (16)

Assuming small orientation errors, each vector vk(θ + δθk) can
be expanded using the first two terms of the Taylor series as

vk(θ + δθk) � vk(θ) + δθk

dvk(θ)

dθ
(17)

Using this approximation, (15) can be written as

a(θ, ζ) =

[
V(θ),

dV(θ)

dθ

] [
h(θ, ζ)
Qh(θ, ζ)

]
� P(θ)g(θ, ζ)

(18)
where

Q � diag{δθ1, · · · , δθK} (19)

P(θ) �

[
V(θ),

dV(θ)

dθ

]
(20)

g(θ, ζ) � [hT (θ, ζ),hT (θ, ζ)QT ]T (21)

Note that the model (18) is similar to (4) in sense that the matrix
P(θ) depends only on θ, while all the unknown parameters ζ are
captured in the vector g(θ, ζ). However, an important difference
between the models (4) and (18) is that (18) describes a more gen-
eral case when both the inter-subarray parameters and orientation
errors are unknown, while (4) corresponds to the case when there
are no orientation errors.

The aforementioned similarity between (18) and (4) allows us
to use the idea of the conventional RARE algorithm to estimate
the source DOAs. In particular, substituting (18) to the MUSIC
equation aH(θ, ζ)GGHa(θ, ζ) = 0 we have

g
H(θ, ζ)B(θ)g(θ, ζ) = 0 (22)

where

B(θ) = P
H(θ)GG

H
P(θ) (23)

Since g(θ, ζ) �= 0, (22) can hold true only if the matrix B(θ)
drops rank. Therefore, to estimate the signal DOAs in the finite
sample case, we can use the following spectral functions similar to
(10) and (11):

f̃1(θ) =
1

det{B̂(θ)}
(24)

f̃2(θ) =
1

L{B̂(θ)}
(25)

where

B̂(θ) = P
H(θ)ĜĜ

H
P(θ) (26)

In the specific case of linear subarrays whose inter-element
spacings are integer multiples of the shortest baseline d, we will
use the same approach to reformulate robust RARE in a search-
free form. Using (18), we can rewrite the steering vector as

a(θ, ζ) =

[
V(z),

dV(z)

dθ

] [
h(θ, ζ)
Qh(θ, ζ)

]

=

[
V(z),

dV(z)

dz

] [
h(θ, ζ)
u(θ)Qh(θ, ζ)

]

� F(z)p(θ, ζ) (27)
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Figure 1: RMSEs versus SNR. First example.

where

F(z) �

[
V(z),

dV(z)

dz

]
(28)

p(θ, ζ) � [hT (θ, ζ), u(θ)hT (θ, ζ)QT ]T (29)

and u(θ) = j 2π
λ

d cos θ. In (27), we have taken into account that

dvk(θ)

dθ
=

dvk(θ)

dz

dz

dθ
(30)

Note that the matrix F(z) is a function of z only. This allows us
to estimate the signal DOAs by means of rooting the polynomial

f̃(z) = det{Ê(z)} (31)

where
Ê(z) = F

H(z)ĜĜ
H
F(z) (32)

4. IDENTIFIABILITY AND UNIQUENESS

In this section, we study the identifiability conditions for our robust
RARE algorithms.

Following [6]-[5], an array (or a subarray) is said to be unam-
biguous if its steering vectors at any two distinct DOAs are linearly
independent. According to the classification given in [10], this is
a trivial ambiguity which means that an array (or a subarray) does
not have grating lobes. Note that our definition of unambiguous
arrays (subarrays) is based on the consideration of trivial ambigui-
ties only. In this case, the uniqueness of the DOA estimates can be
established in the almost sure sense [5].

The following theorem establishes the almost sure uniqueness
of the robust RARE DOA estimates in the infinite sample case:

Theorem: Let

βk =

{
1 , Mk and M̃k are unambiguous
0 , otherwise

(33)

where Mk and M̃k are the manifolds that correspond to the steer-
ing vector vk(θ) and its derivative vk(θ)/dθ, respectively.
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Figure 2: RMSEs versus σ2

v . Second example.

If the following condition is satisfied

L ≤
K∑

k=1

βk(Mk − 2) (34)

then the matrix B(θ) drops rank if and only if θ ∈ {θ1, · · · , θL}.
�

Proof: See [11].
It is worth noting that the identifiability condition (34) is more

strict than the condition obtained in [4] and [6] for the conventional
RARE estimator.

5. SIMULATION RESULTS

In our simulations, we assume an array composed of two subarrays
and two uncorrelated sources with the DOAs θ1 = 10◦ and θ2 =
20◦. The inter-subarray displacement vector is [1.3λ, 1.2λ]T . The
first subarray is free of orientation errors, while the second subar-
ray suffers from an orientation error. This error is either constant
(examples 1 and 3) or random (examples 2 and 4). The number
of snapshots is N = 100, and all results are averaged over 200
simulation runs. In each figure, the related stochastic CRB is also
displayed. The latter bound has been derived in [11].

In the first example, we assume that the first subarray consists
of six sensors at the locations {(0, 0), (0.4λ, 0.2λ), (0.9λ, 0.4λ),
(1.4λ, 0.7λ), (1.7λ, 1.1λ), (2.1λ, 1.3λ)}, while the second sub-
array has six sensors at the locations {(0, 0), (0.4λ, 0.3λ), (0.8λ,
0.5λ), (1.3λ, 0.7λ), (1.9λ, λ), (2.3λ, 1.3λ)}. Note here that the
sensor locations for each subarray are indicated relative to its first
sensor. The second subarray has an orientation error of 2◦. The
conventional and robust spectral RARE algorithms are compared
in Figure 1 which shows the DOA estimation root-mean-square
errors (RMSEs) versus the signal-to-noise ratio (SNR).

In the second example, we assume that the first subarray con-
sists of four sensors located at {(0, 0), (0.3λ, 0.4λ), (0.7λ, 0.8λ),
(1.2λ, 1.1λ)}, while the second subarray has six sensors located
at {(0, 0), (0.4λ, 0.6λ), (0.91λ, λ), (1.3λ, 1.3λ), (1.6λ, 1.7λ),
(1.9λ, 2λ)}. The second subarray suffers from a random orienta-
tion error which changes from run to run and is assumed to have
Gaussian distribution with zero mean and variance σ2

v . In Figure

II - 243

➡ ➡



0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

SNR(dB)

R
M

S
E

 (
D

E
G

R
E

E
S

)

RARE
ROBUST RARE
CRB

Figure 3: RMSEs versus SNR. Third example.

2, we plot the DOA estimation RMSEs of the conventional and
robust spectral RARE algorithms versus σ2

v at SNR= 20 dB.
In our third example, the first subarray is a ULA of four sen-

sors with the interelement spacing of 0.5λ, and the second subar-
ray is a ULA of six sensors with the interelement spacing of 0.4λ.
The first subarray does not suffer from any orientation error while
the second subarray has an orientation error of 2◦. The conven-
tional and robust root-RARE algorithms are compared in Figure 3
which displays the DOA estimation RMSEs versus the SNR.

In the last example, both subarrays are assumed to have the
same configuration as in the previous example. The second sub-
array has a random Gaussian orientation error with zero mean and
variance σ2

v . Figure 4 illustrates the DOA estimation RMSEs of
the conventional and robust root-RARE algorithms versus σ2

v at
SNR= 20 dB.

All figures show that in the presence of subarray orientation
errors, the robust RARE algorithms have substantially better per-
formance than the conventional RARE techniques. In fact, the
RMSE of robust RARE remains close enough to the correspond-
ing CRB, whereas the RMSE of conventional RARE may be far
away from this bound (Figures 1 and 2).

6. CONCLUSIONS

The problem of DOA estimation using partly calibrated arrays
composed of multiple subarrays with unknown inter-subarray pa-
rameters and imperfectly known subarray orientations has been
studied. The robust modifications of the RARE algorithm have
been proposed that improve its DOA estimation performance in
the case of subarray orientation errors. Simulation results validate
substantial performance improvements achieved by the new DOA
estimation techniques. In particular, the performance of the pro-
posed robust RARE algorithm has been shown to be close to the
stochastic CRB of the considered estimation problem.
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