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ABSTRACT
We extend our investigations into the region between “performance
breakdown” (threshold) conditions for subspace-based direction-
of-arrival (DOA) estimation techniques and maximum likelihood
(ML) DOA estimation for uniform circular antenna arrays. Using
a new outlier mitigation technique that can be applied to arbitrary
geometry arrays, we demonstrate that subspace-based DOA esti-
mation outliers could be reliably rectified up to the point where er-
roneous DOA estimates start to generate optimally high likelihood
ratios (LRs). This is a manifestation of the onset of a discontinu-
ity in the ML estimation, which cannot be rectified within the ML
paradigm.

1. INTRODUCTION

While the fact that all subspace-based estimation methods suffer
an abrupt degradation in performance as either the signal-to-noise
ratio (SNR) or the number of available snapshots � drops below
certain threshold values has been known for a long time [1, 2],
only recently was it emphasised that true ML estimation suffers
from a similar “performance breakdown” phenomenon, but at a
different threshold. Specifically, in [3] a study of ML threshold
conditions was conducted for a single source and a single snap-
shot, where the ML estimator is equivalent to the conventional
beamformer. In [4, 5], we suggested a technique based on the gen-
eralised likelihood-ratio test (GLRT), whereby a set of DOA esti-
mates is treated as a set of proper ML estimates if the LR generated
by this set exceeds that generated by the exact (true) parameters for
the given sufficient statistics.

For performance investigations within Monte-Carlo simula-
tions, this comparison can be directly performed since the exact
covariance matrix of the simulated data is known. On the other
hand, for practical applications, this approach is still valid since
the exact LR value generated by the true covariance matrix is re-
placed by some threshold value. Fortunately, the exact LR is a
random number with a scenario-free p.d.f. that is completely spec-
ified by the number of the antenna sensors � and the number of
independent training snapshots � [see [8](15)], hence a thresh-
old can be pre-calculated based on any desired probability of false
identification as an outlier for some true ML solution.

This technique was applied to both linear uniform and sparse
antenna arrays (with a uniform linear co-array) in [4, 5], where we
were able to demonstrate that subspace-based method-specific out-
liers could be reliably identified by this technique, since LRs gen-
erated by sets of estimates containing outlier(s) have significantly

smaller LRs than the (scenario-free) threshold value. For linear an-
tenna arrays, the LR optimisation technique, which heavily relied
upon Toeplitz properties of the relevant covariance matrices, was
able to provide ML DOA estimates without outliers, even though
MUSIC mostly failed [4, 5]. Yet, if the SNR and/or sample support
continued to degrade, we observed the ML “performance break-
down” whereby sets of DOA estimates containing severely erro-
neous estimates still generated high LRs, in many cases exceed-
ing the exact LR bound. Clearly, only the intermediate region be-
tween the threshold conditions of some subspace-based technique
(eg. MUSIC) and the ML threshold conditions could be considered
for rectification; ML performance breakdown obviously cannot be
neither detected nor rectified within the ML paradigm.

In this paper, we are interested in the similar phenomenon in
uniform circular antenna arrays (UCAs). Recently, two techniques
have been reported (the Global Matched filter approach [6] and
the Generalised Rectification scheme [7]) that in the threshold area
provided better performance than MUSIC for UCA. Yet, analysis
of the “gap” between MUSIC and ML threshold conditions within
our approach became possible only since an appropriate outlier
mitigation scheme, that does not rely upon the particular (Toeplitz)
properties, was now developed [8].

2. DATA AND ALGORITHM DESCRIPTION

Consider a UCA with � omnidirectional sensors located at posi-
tions �� �����Æ�� � �����Æ��, (� � �� � � � �� � 	� Æ � 
��� ).
For simplicity, we assume that the array sensors and the sources
are co-planar; � is the radius of the UCA, measured in wavelength
� units. The steering vector associated with the azimuthal angle
(DOA) 	 � ��� 
�� is:
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where 
�	� � 
���
�� �
�
��� 	�. Assuming � 
 � uncorrelated

Gaussian sources, we may express the vector of observed sensor
outputs (the “snapshot”) at time � as

���� � �������� � ���� for � � 	� � � � � � (2)

where ���� � ���� are the Gaussian signal amplitudes with
DOAs � � �	�� � � � � 	��� and powers � � diag ���� � � � � ���,
the array-signal manifold matrix is ���� � ���	��� � � � � ��	��� �
����, and ���� � ���� is Gaussian white noise of power ��:

���� � �� ��� �� � �� ���� � �� ��� �� ���� � (3)
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where �� ��� �� �� denotes a complex (circular) Gaussian dis-
tribution of dimension � with zero mean and covariance matrix
�. Therefore the input data is described by the complex Gaussian
distribution �� ��� �� ��, where � � ����� ����� ��� �� .
We assume that the snapshots are statistically independent and so
the sufficient statistic for inferences regarding this data is the direct
data covariance (DDC) matrix �� � �

�

�
�

���
��������� where

� �� is described by the complex Wishart distribution ������ ���.
Given the antenna array geometry, the sufficient statistic ��

and the known (or previously estimated) number of sources 	,
we implement the general GLRT-based algorithm described in our
companion paper [8]. A key role in this algorithm is played by the
sphericity test and its LR analysis of the subspace-derived (eg. MU-
SIC) solutions, and direct optimisation of this LR over the set of
DOA and power parameters. (The source powers and white-noise
power are estimated by traditional means, eg. [9].) For Gaussian
mixtures, the LR for this test is
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(� � 
� ��� � �), with the set of estimated parameters ���� ��� ������
being those that yield the global maximum of the LR 
� ���, which
coincides with the global maximum of the (stochastic) likelihood
function [4, 5].

Since the ML-generated covariance matrix������� ��� ���� be-
longs to the same admissible set as the true covariance matrix �,
we obviously have


����� � 
��� 
 (5)

Therefore any set of parameters estimates ���� ��� ���� (including
our MUSIC-generated ones) that are deemed to be sufficiently
close to ML estimates must obey the similar condition


� ��� � 
��� 
 (6)

However, when 
� ��� � 
���, then the set of (MUSIC-generated,
say) estimates is not statistically close enough to the ML estimates,
and should be disregarded, since it contains one or more outliers.

Naturally, the strict comparison in (6) can be performed only
for Monte-Carlo simulations where the exact covariance matrix �
is known. For practical applications we adopt the thresholding


�� ��� � � (7)

where the threshold value � is pre-calculated using the scenario-
free p.d.f. ��
�� for the exact LR, and any prescribed probability
that some true ML solution would be wrongly identified as an out-
lier [8].

3. SIMULATION RESULTS AND DISCUSSION

Consider a ten-sensor UCA (� � ��) with � � ���
� ��������
and � � �
���� so that the distance between two neighbouring
sensors is ���. Suppose there are 	 � � independent sources
with 20dB SNR per source, and � � ��� snapshots. Four sources
are uniformly distributed in azimuth, while the fifth DOA is varied
in separation from the fourth:

�� � ��Æ� ��Æ� ��Æ� ��Æ� ��� 
 �� � ���Æ� ��
�Æ� ��Æ� 
 (8)

These three separate DOA values for the fifth source �� have been
specifically selected to demonstrate the transition from the MUSIC-
specific performance-breakdown conditions, that can be efficiently
rectified by our GLRT-based technique ��� � ��Æ�, to the ML
performance-breakdown conditions that could not be rectified within
the ML paradigm ��� � ��Æ�.

The Cramér–Rao bound (CRB) for the fifth source is �
��Æ,
�
��Æ and �

�Æ respectively. Thus for �� � ��Æ, the CRB pre-
dicts that the ultimate DOA estimation accuracy is sufficient for
reliable separation of the fourth and fifth sources, since it is sig-
nificantly smaller than the inter-source separation of �Æ. At the
other extreme, the CRB exceeds the �Æ separation. Thus reli-
able separation of the last two sources is impossible. Still, all
three locations of the fifth source are close enough to the fourth
source to cause a significant number of MUSIC outliers. Out-
lier analysis has been conducted first by the impractical “strict”
condition (6) in order to evaluate the potential capabilities of ML
DOA estimation, but also in order to assess additional degradations
caused by practical thresholding (7) with probabilities of incorrect
identification set at ���� and ���� . We computed the scenario-
free p.d.f. ��
�� by direct Monte-Carlo simulation with ��� tri-
als, which leads to the thresholds � ��� � �
���� � ���� and
� ��� � �
���� � ���� . The function (not illustrated here) is
very well localised within the range �
� � �� � �
�.

Fig. 1 shows the sample p.d.f.’s of the LR for the two scenar-
ios with �� � ��Æ and �� � ��Æ. Fig. 1(a) and (b) show the exact
LR 
���� (“threshold”), the MUSIC LR 
�� ��� (“MUSIC”), and
the LR after the first optimisation (using the MUSIC DOAs and
estimated powers as initialisers) (“optimisation”, see [8]). We see
that for �� � ��Æ, the vast majority of trials (in fact, 91.9%) re-
sulted in MUSIC LRs that were extremely poor compared with
the “proper ML” bound represented by the exact LR threshold,
situated between about 0.8 and 0.9. The application of this LR
maximisation routine in the vicinity of the MUSIC-generated esti-
mates improved matters only slightly, since the MUSIC estimates
were generally so far from ML ones. In fact, only 24.4% of trials
resulted in LRs after optimisation that exceeded the ML bound.

For �� � ��Æ (Fig. 1(b), introduced to illustrate ML perfor-
mance breakdown) the MUSIC estimates appear to have an im-
proved LR, however, 98.6% of MUSIC trials were below the ML
bound (and hence would be declared to contain outliers), and only
6.9% of optimisation trials exceeded the ML bound. This be-
haviour is a typical manifestation of the onset of ML performance
breakdown, whereby severely erroneous DOA estimates may gen-
erate optimally high LRs.

Analysis of the maximum DOA estimation error supports this
conclusion. For �� � ��Æ, the p.d.f. of such errors (not introduced
here) shows MUSIC and optimisation concentrated around ���Æ,
while after refinement the maximum DOA errors are concentrated
around �Æ. For �� � ��Æ, the distinction is similar but less marked
(approximately ���Æ and 
Æ respectively). While here optimisa-
tion added 55 trials to the 14 originally exceeding the ML bound,
in all cases severe outliers remained. The physical explanation of
such behavior is clear: with such a small separation between the
two last sources, even only four properly estimated DOAs with the
last one being between the two close sources results in a quite high
LR, while the fifth DOA estimate is selected in insignificant spuri-
ous LR maximum. By the way, this means that in most cases the
detection-estimation procedure should identify such a scenario as
four-source, rather than five-source. Yet, in our problem we are
forced to select an erroneous DOA estimate, while the correct four
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Fig. 1. Sample probability distributions of the likelihood ratio for �� � ��
Æ (a,c), and �� � ��

Æ (b,d) for an exact LR threshold.
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�� ��Æ ����Æ ��Æ ��Æ ����Æ ��Æ ��Æ ����Æ ��Æ

LR(MUSIC) � LR(threshold) 91.9% 100% 98.6% 84.2% 99.5% 70.8% 83.1% 98.4% 56.3%
LR(opt) � LR(threshold) 24.4% 0.2% 6.9% 24.4% 1.7% 51.2% 24.5% 6.9% 68.9%

LR(MUSIC) � LR(threshold) & good opt 16.3% 0.2% 5.5% 8.6% 1.2% 22.0% 7.6% 5.3% 25.2%
max CRB in � (degrees) 0.36 0.75 1.46 0.36 0.75 1.46 0.36 0.75 1.46

RMSE in �� after refinement (degrees) 0.68 1.82 2.94 1.32 1.99 3.35 1.39 2.01 4.20

Table 1. Sample five-source performance statistics for an exact LR threshold (left three columns); for a LR threshold equal to 1% probability
of false alarm (centre three columns), and for a LR threshold equal to 0.1% probability of false alarm (right three columns).

of them already resulted in a sufficiently high LR.
Fig. 1(c) and (d) show similar LR p.d.f.’s, but for the succes-

sive stages in the outlier mitigation method. Each subfigure shows
the exact LR ����� distribution for those trials where MUSIC esti-
mates did not exceed the ML bound (“threshold (given bad opt)”),
the LR after replacing one outlier by the most likely new DOA [8]
(“augmentation”), and the LR after the second optimisation (us-
ing the “augmented” DOAs and estimated powers as initialisers)
(“refinement”).

In this case, all trials were (if necessary) correctly rectified by
our approach, ie. the LR after refinement (or after the first optimi-
sation, if successful) always exceeded the ML bound defined by
the LR of the exact covariance matrix. In spite of this, the sample
RMSE of ����Æ was significantly greater than the CRB of ����Æ

(see Table 1). This result indicates that the usual assumptions made
regarding the second-order expansion of the likelihood function in
the vicinity of the exact parameters is not sufficiently accurate for
this “threshold” region.

Analysis of the maximum DOA estimation error demonstrates
that though in all “rectified” trials, severe outliers have been re-
moved, they have been replaced by the DOA estimates in the vicin-
ity of the true ones, but this vicinity was found to be too large to
provide sufficiently accurate DOA estimates that meet the CRB
prediction. Therefore, in these two cases �� 	 ��Æ and �� 	 ��Æ,
despite extremely high LR maximisation efficiency, with all 1000
trials found to result in both cases in “better than the true” DOA
estimates (in terms of the maximised LR), the actual performance
is significantly different. For the first scenario, the GLRT-based
approach provided reliable outlier mitigation and accurate iden-
tification of all five sources. The second scenario, far beyond the
resolution capabilities of any ML technique illustrates “ML perfor-
mance breakdown” behavior, when severely erroneous solutions
still generate optimally high LRs.

Table 1 also introduces results for “practical” thresholding (7).
As one would expect, such a thresholding let some MUSIC gener-
ated solutions that were sufficiently close (in terms of LR) to ����
to be treated as ML-optimal, while the strict inequality (6) still did
not occur. Remarkably, for both threshold values and �� 	 ��Æ,
only 244 or 245 scenarios were accepted where previously direct
LR optimisation in the strict case resulted in “better than the true”
solutions. This means that for this practically important scenario,
all outliers have been properly identified and replaced by suffi-
ciently accurate DOA estimates, despite the fact that accuracy in
the “refined” data has been degraded compared with the ideal case
�����Æ instead of ����Æ).

4. CONCLUSIONS

Analysis of the MUSIC-derived estimates and the estimates pro-
vided by our proposed GLRT-based technique has revealed a sig-

nificant “gap” between the performance breakdown (threshold) con-
ditions for this subspace-based DOA estimation technique and ML
estimation in uniform circular arrays. We have demonstrated that
MUSIC-produced outliers could be reliably identified and recti-
fied by the introduced technique, unless conditions for the ML
performance breakdown are met. In the latter case, our GLRT-
based technique produces solutions that have optimally high LRs,
being still severely erroneous DOA estimates. These conditions
constitute the ultimate limit, that could not be overcome by any
technique within the ML paradigm.
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