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ABSTRACT

We generalize a new incoherent wideband direction-of-arrival (DOA)
estimation algorithm that provides higher resolution than tradi-
tional incoherent techniques. The new method is able to better
adjust its beam response when multiple sources are present than
incoherent MUSIC. The original algorithm was designed to work
strictly for an uniform linear array. In this paper, we demonstrate
how to generalize the algorithm to work over arbitrary 1-D or 2-D
arrays. We demonstrate the higher resolution of the new algorithm
against incoherent MUSIC for 1-D and 2-D arrays using simula-
tions of two source signals.

1. INTRODUCTION

Sensor arrays are prevalent in many applications such as radar,
wireless communications, and sonar. By using multiple sensors, it
is possible to separate multiple signals based upon their different
direction of arrivals (DOAs). Beamforming and DOA estimation
will allow for increased capacity in wireless communication ap-
plication. Tracking applications require the ability to localize the
source of the signals. The DOA estimation problem has been stud-
ied intensively and many good methods are available [1]. How-
ever, most of these methods are designed to work exclusively for
narrowband signals [2]. For signals whose bandwidth is signifi-
cant relative to their center frequency, a few wideband DOA esti-
mation techniques have been proposed (see [3] and the references
therein). Most of the wideband methods decompose the signals
into several narrowband frequency components through a series of
filterbanks, estimate the spatial correlation matrix over each fre-
quency component and use the structure of correlation matrices to
arrive at a DOA estimate. There are two fundamental classes of
methods to derive a DOA from the correlation matrices. First, the
‘incoherent’ methods process each frequency component indepen-
dently and form a weighted average of DOA estimates over all fre-
quency bins[4]. On the other hand, the ‘coherent’ methods form a
global correlation matrix by averaging transformed versions of the
individual correlation matrices for each frequency bin.

This paper generalizes the wideband DOA estimation meth-
od introduced in [5] for uniform linear arrays. The generalized
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method works for arbitrary 1-D and 2-D arrays. Furthermore, the
paper modifies the approach in [5] to improve the robustness of
the algorithm against noisy data through the use of a projection
matrix.

This paper is organized as follows. Section 2 reviews the DOA
estimator introduced in [5]. The generalization of this technique
for arbitrary arrays is provided in Section 3. Section 4 introduces
the projection matrix for better performance. We compare the per-
formance of the new method against incoherent MUSIC (IMUSIC)
[4] over simulated data in Section 5. Finally, Section 6 provides
concluding remarks.

2. WIDEBAND DOA ESTIMATION

This section describes the approach first introduced in [5]. The
first step in the wideband DOA estimation is to decompose the
wideband sources into several narrowband frequency components
through a filterbank. The discrete Fourier transform (DFT) is a
natural and common choice for the filterbank. After obtaining the
frequency components, the wideband methods form a spatial cor-
relation matrix of the sensor outputs for each frequency bin.

The wideband method in [5] assumes that the number of signal
sources P is known. It uses K frequency bins by performing an
eigen decomposition of the correlation matrices for each bin. Then
each bin is divided into a signal and noise subspace. Let Fi be
the signal subspace matrix of frequency ωi and Wi be the noise
subspace of frequency ωi for i = 1, . . . , K . Given that there are
P sources,

Fi = AiTi = [ ai(�α1) · · · ai(�αP ) ]Ti, (1)

aH
i (�αp)Wi = 0, (2)

where ai(�αp) is the array manifold (or steering) vector for the
narrowband source signal corresponding to frequency ωi and di-
rection �αp. For a linear array, �αp = sin θ/c where θ is the azimuth
angle and c is the speed of propagation. For a uniform linear array
of M sensors with displacement d between sensors

ai(θj) = [ e−jωiτj e−j2ωiτj . . . e−jMωiτj ]T

where τj = d sin θj/c. For an uniform linear array, a simple re-
lation exists between the array manifolds corresponding two dif-
ferent frequency bins ωx and ωz such that ωx > ωz ≥ 0. The
relationship is

ax(θx) = Φ(ωy, θy)az(θz) (3)
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where

Φ(ωy, θy) = diag{e−jωyτy , . . . , e−jMωyτy}, (4)

and
ωy = ωx − ωz.

The DOA corresponding to array manifold x is related to the DOA
of array manifold z via

sin θx =
ωy

ωx
sin θy +

ωz

ωx
sin θz.

If θy happens to be equivalent to θz the DOA of the transformed
manifold x is unchanged by the tranformation matrix Φ. This im-
plies that if ones hypothesizes a DOA θy and applies (3) to trans-
form an array manifold corresponding to frequency bin z to an
array manifold corresponding to frequency bin x, then the DOA of
the array manifold remains unchanged if θy = θz . This fact forms
the central idea behind the wideband method in [5]. The DOA
is estimated by transforming the signal subspace corresponding
to frequency bin ω1 via (3) for a hypothesized DOA θ and com-
paring the resulting subspace to the noise subspace for the given
frequency bin. In other words, the estimator forms the matrix

D(θ) = FH
1

h
ΦH

2 (θ)W2 . . . ΦH
K(θ)WK

i
(5)

where
Φk(θ) = Φ(ωk − ω1, θ).

If θ matches the DOA of one of the source signals, then D becomes
rank deficient because the DOA of that source is preserved by the
transformation in (3). Namely, if θ in (5) is same as the l-th DOA,

D(θl) =

TH
1

266666664

266666664

aH
2 (θ̂2,1)

...
aH

2 (θl)
...

aH
2 (θ̂2,P )

377777775
W2 · · ·

266666664

aH
K(θ̂K,1)

...
aH

K(θl)
...

aH
K(θ̂K,P )

377777775
WK

377777775
.

(6)
By (2), the l-th row of the large matrix in (6) is zero and matrix

D is singular.
The DOA estimator in [5] simply tests the singularity of ma-

trix D for different hypothesized angles θ by taking the condition
number or the reciprocal of the smallest eigenvalue of D. Then,
the DOAs are simply the peaks of the curve representing the sin-
gularity test versus the hypothesized DOA.

For a given frequency bin, it is possible that the transforma-
tion in (3) happens to transform the DOA of one source into the
DOA for another source when θy does not match any of the source
DOAs. Fortunately, the transformed DOA changes when another
frequency bin is considered. To counter all possible scenarios
where DOAs are transformed to DOAs of other sources, it is shown
in [5] that

K ≥ �max{ M

M − P
, P + 1}�

so that D only becomes rank deficient if the hypothesized DOA
matches a source DOA.

For the case where one source is present, i.e., P = 1, then the
matrix D becomes a vector. Then, for any hypothesized DOA, the
algorithm simply calculates the norm of D. It can be shown that
this operation is equivalent to IMUSIC.

3. GENERALIZATION OF THE WIDEBAND DOA
ESITMATOR

This section generalizes the DOA estimator to arbitrary sensor ar-
rays. For arbitrary arrays, including multi-dimensional arrays, the
DOA is now represented by the slowness vector

�α =
1

c
(sin θ sin φ, cos θ sin φ, cos φ). (7)

where θ and φ are the azimuth and elevation arrival angles, respec-
tively. Note that the magnitude of the slowness vector is 1/c. The
n-th element of the array manifold vector of an arbitrary sensor
array is

exp{jω(�α · �xn)},
where �xn is the 3-D location of the n-th sensor, i.e.,

�xn = (xn, yn, zn).

We redefine the transformation matrix in (4) as

Φi(�α) = diag{a(ωk − ω1, �α)}. (8)

The generalized DOA estimator is

�̂α = arg max
�α

κ{D(�α)}.

where κ denotes the condition number.
We show below that the new estimator works under certain

conditions for the array geometry. The expression for the D matrix
in (5) is now

D(−→α ) =

TH

264
264 bH

2,1

...
bH

2,P

375W2 · · ·

264 bH
K,1

...
bH

K,P

375WK

375 (9)

where
bk,p = Φk(�α)a(ω1, �αp) (10)

is the transformed array manifold. In the previous section, we
showed that for uniform linear arrays, bk,p = a(ωk, �αp) and D
loses rank if and only if �α = �αp. For the new algorithm to be use-
ful, we must show that the same property holds. For D to be rank
deficient if and only if −→α corresponds to the DOA of one sources,
the following two conditions must hold for the transformed mani-
folds:

1. bk,p = a(ωk, �αp) for k = 1, . . . , K if and only if �α form-
ing the transformation matrix Φ in (8) matches the DOA
for the p-th source, i.e. �αp.

2. The bk,p’s span the P -dimensional subspace.

If the bk,p’s are array manifolds of frequency k, the second
condition is always satisfied. We show below that these conditions
are satisfied for arbitrary 1-D and 2-D arrays.

Let
b = diag{a(ω1, �α1)}a(ω2, �α2).

The phase of the n-th element of b is

ω1(�α1 · �xn) + ω2(�α2 · �xn) = ω3(�β · �xn)

where
ω3 = ω1 + ω2
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and

�β =
ω1�α1 + ω2�α2

ω3

= γ�α1 + (1 − γ)�α2 (11)

where 0 < γ < 1. If the magnitude of �β is 1/c, we can say that it
is n-th element of the array manifold vector of frequency ω3. By
triangle inequality,����β���≤ γ|�α1| + (1 − γ)|�α2| =

1

c
. (12)

The equality holds in (12) if and only if �α1 is proportional to �α2,
which means �α1 = �α2 because the magnitude of all the slowness
vectors is 1/c. This ensures that the first condition holds given that
enough frequency bins are used to form the D matrix in (9). For
the second condition to hold, �β must lead to a valid array mani-
fold. In general, the magnitude of �β is not 1/c. For one or two
dimensional arrays, where one or two of the elements in �xi is zero,
even if �β is not a valid slowness vector, if there is a valid slowness
vector �α3 such that

�β · �xi = �α3 · �xi, (13)

then the b vector can lead to a valid array manifold b. Let the
slowness vector and �β be

�αi = (αi,x, αi,y, αi,z),

�β = (βx, βy, βz).

Then,
�αi · �xj = αi,xxj + αi,yyj + αi,zzj

The vectors of the phase terms of b are

�αi · �x = αi,xx + αi,yy + αi,zz,

�β · �x = βxx + βyy + βzz,

where
x = [ x1 · · · xM ]T ,
y = [ y1 · · · yM ]T ,
z = [ z1 · · · zM ]T ,

Without loss of generality, for a 1-D array y = �0 and z = �0. Like-
wise, for the 2-D array z = �0 and the vectors x and y are linearly
independent. For both cases, we show that (13) holds, and �β leads
to a valid manifold vector.

One-dimensional (Linear) Array

For a linear array, y and z are zero vectors. Therefore, one
must only show that α3,x = βx. As a result, (13) is equivalent to

γ sin θ1 + (1 − γ) sin θ2 = sin θ3 (14)

where the constant term (1/c) cancels out. Because 0 < γ <
1, there always exists a θ3 that satisfies (14) for any θ1 and θ2.
Therefore,

b = a(ω3, θ3).

This is consistent with Section 2.

Two-dimensional Array

For the case of a 2-D array, we have two vectors to consider,
x and y. The phase term is

(γ�α1 + (1 − γ)�α2) · �x
= (γα1,x + (1 − γ)α2,x)x + (γα1,y + (1 − γ)α2,y)y.

If we change the variables as

ui = sin θi,

vi = sin φi.

then,

αi,x = viui,

αi,y = vi

q
1 − u2

i .

Finally, (13) is equivalent to

γv1u1 + (1 − γ)v2u2 = v3u3,

γv1

q
1 − u2

1 + (1 − γ)v2

q
1 − u2

2 = v3

q
1 − u2

3.

Because 0 ≤ γ, |u1|, |v1|, |u2|, |v2| ≤ 1, it can be shown that
there exist unique values for u3 and v3 such that 0 ≤ |u3|, |v3| ≤
1. Therefore, once again, the b vector is an array manifold given
by

b = a(ω3, arcsin(u3), arcsin(v3)).

One can conclude that arbitrary 2-D arrays satisfy the two condi-
tions.

4. PROJECTION MATRIX

In the previous section, we showed that the estimator should not
lead to spurious peaks when employing arbitrary 1-D and 2-D ar-
rays. The performance of the estimator can be improved by adding
the projection matrix P such as

Pi(�α) = I − a(ωi, �α)aH(ωi, �α)

aH(ωi, �α)a(ωi, �α)

to the D matrix as

D′(�α) =
FH

1 [ ΦH
2 (�α)PH

2 (�α)W2 · · · ΦH
K(�α)PH

K(�α)WK ]

By inserting the projection matrices, the norm of the errors in the
signal subspace and the noise subspace which are induced from
the estimated correlation matrices can be reduced. This provides
higher resolution.

5. SIMULATIONS

To evaluate the new DOA estimator, we tested a random linear ar-
ray and a 2-D array using simulated data representing two sources.
Each source signal is a random sum of sinusoids. Both arrays have
7 sensors. The sensors in the 2-D array form a circle with one sen-
sor at its center. The sensor spacing in the linear array is nonuni-
form. Figure 1 illustrates both arrays. In order to avoid aliasing,
the sensor spacing in the linear array is less than λm/2, where λm
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(a) Random linear (b) 2D circular

Fig. 1. Array structures.

is the shortest wavelength of the wideband sources. For the 2-D
array, the the distance between sensors is equal to λm/2.

The results are compared with that of incoherent MUSIC (IMU-
SIC) [4]

�̂α = arg max
�α

KX
k=1

1

aH(ωk, �α)WkWH
k a(ωk, �α)

. (15)

Note that if P = 1, the two methods would be equivalent. In
both 1D and 2D simulations, 9 frequency bins are used and the
SNR is 7 dB.

Figure 2 shows the example results for the random 1-D array.
The left panel represents the output of IMUSIC, and the right panel
represents the reciprocal of the smallest eigenvalue of D. Two
sources are located at 20◦ and 26◦. Clearly, the new method can
resolve the two sources. In addition, the new method exhibits little
bias in this case.

Figure 3 shows the output of the estimators for the 2-D circu-
lar array where the two targets exist at (20◦, 30◦) and (30◦, 15◦).
As in the 1-D case, only the new estimator resolves both signals.
Interestingly, the new method does exhibit higher sidelobes, which
we plan to study further.

6. CONCLUSIONS

This paper generalizes the new wideband DOA estimator intro-
duced in [5] to work on arbitrary 1-D and 2-D arrays. Simulated
results indicate that the new estimator, which uses both the signal
and the noise subspaces, can resolve two closely spaced targets
with higher resolution than IMUSIC, which uses only the noise
subspaces. We anticipate that the new method can be used for
multiple target tracking using acoustic sensors. The acoustic sen-
sor of a target is composed of the sum of narrowband harmonics.
The new method should be able to better detect multiple DOAs
of targets demonstrating small angular separation. In future work,
we will be able to test the new algorithm on real acoustic data. In
addition, we are studying how to modify the algorithm to treat the
case where the number of sources P is unknown.

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.
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Fig. 2. Results of DOA estimation for random linear array

(a) IMUSIC (b) New

Fig. 3. Results of DOA estimation for 2-D circular array
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