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ABSTRACT

The threshold region mean squared error (MSE) performance of
the Capon-MVDR algorithm is predicted via an adaptation of an
interval error based method referred to herein as the method of
interval errors (MIE). MIE requires good approximations of two
quantities: (i) interval error probabilities, and (ii) the algorithm
asymptotic (SNR→ ∞) MSE performance. Exact pairwise er-
ror probabilities for the Capon (and Bartlett) algorithm are de-
rived herein that include finite sample effects for an arbitrary col-
ored data covariance; with the Union Bound, accurate approxima-
tions of the interval error probabilities are obtained. Further, with
the large sample MSE predictions of Vaidyanathan and Buckley,
MIE accurately predicts the signal-to-noise ratio (SNR) threshold
point, below which the Capon algorithm MSE performance de-
grades swiftly. A two-point measure of the probability of resolu-
tion is defined for the Capon algorithm that accurately predicts the
SNR at which sources of arbitrary closeness become resolvable.

1. INTRODUCTION

The threshold region mean squared error (MSE) performance of
signal parameter estimates derived from the Capon high-resolution
spectral estimator, a.k.a the minimum variance distortionless re-
sponse (MVDR) spectral estimator, is the primary subject of this
analysis. Similar to maximum-likelihood (ML) methods, the Capon
processor is a beamscan type algorithm involving a nonlinear max-
imization of an objective search function (OSF). Parameter esti-
mation algorithms requiring nonlinear searches typically exhibit a
threshold effect in MSE performance. Below a specific signal-to-
noise ratio (SNR) called the estimation threshold, the MSE departs
from the asymptotic MSE performance and rises rapidly (see pp.
278–286 of [13]). Clearly, accurate prediction of this threshold
SNR is of great practical significance for system design/analysis,
particularly for methods capable of significant resolving power at
SNRs too low for signal detection. Below the estimation thresh-
old SNR, the MSE rises until it reaches a maximum that at times
can be well approximated by the variance of an estimate that is
assumed uniformly distributed over the search domain. The SNR
at which the MSE performance achieves this level of futility is
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called the no information point. Figure 1 illustrates this composite
MSE performance typical of nonlinear estimation schemes. This
composite MSE behavior is typical of nonlinear ML estimation
[13], but likewise occurs with the Capon spectral estimator [14].
Although well-known, accurate prediction of this composite per-
formance curve for the Capon algorithm remains an open problem.
The goal of this analysis is to predict this MSE curve for the Capon
algorithm with primary emphasis on threshold region performance
from which an accurate prediction of the threshold SNR can be ob-
tained.

A classical method of MSE approximation, referred to herein
as the method of interval errors (MIE), was introduced by Van
Trees [13] and provides a means of predicting threshold region
performance of nonlinear estimation techniques. Variants of MIE
have been applied to subspace based methods and ML estimation
techniques with much success [10, 6, 15, 1, 8]. MIE requires good
approximations of two quantities: (i) interval error probabilities,
and (ii) the asymptotic MSE performance. Both of these quantities
are algorithm dependent. The interval error probabilities quantify
the likelihood that the estimator derives its signal parameter esti-
mate from a false peak of the ambiguity function as opposed to
the true peak. These probabilities are approximated via the Union
Bound in conjunction with exact pairwise error probabilities for
the Capon estimator that are derived herein; these derived proba-
bilities account for arbitrary colored data covariance structure as
well as finite sample support training effects [3, 7]. These calcu-
lations naturally lead to a two-point measure of the Capon prob-
ability of resolution from which accurate prediction of the SNRs
required to resolve closely spaced sources is possible.

2. THE CAPON METHOD
The Capon high-resolution algorithm is well-known [2, 3, 14] and
its performance has been studied extensively. It will be assumed
in this section that all sources are well separated (by at least a
beamwidth or Rayleigh distance) and possess SNRs that exceed
the estimation threshold. In addition it is assumed that signals are
mutually incoherent (coherent sources are not resolvable with the
Capon algorithm), and that the total number of signals present in
the data is known.

2.1. Capon’s Approach

Given a set of independent identically distributed signal bearing
observations X = [x(1)|x(2)| · · · |x(L)] where each vector is
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N × 1 complex circular Gaussian, i.e. x(l) ∼ CNN (0,R),
l = 1, 2, . . . , L, Capon proposed the following power spectral es-
timator:

PCapon(θ) =
1

L − N
· 1

vH(θ) bR−1v(θ)
(1)

where v(θ) is the assumed array response, bR = XXH , and R =
RN +σ2

S ·v(θT )vH(θT ), where RN is background noise (possi-
bly colored, but absent of signal-like interference). The maximum
output provides an estimate of the signal power σ2

S and the signal
parameter estimate is given by the scan value of θ that achieves
this maximum; namely,bθ = arg max

θ
PCapon(θ) (2)

(assuming a single signal is present). It shall be assumed that K
signals are present in the data, and that the Capon parameter esti-
mates bθk, k = 1, 2, . . . , K, are obtained as the arguments of the
K largest peaks of PCapon(θ).

2.2. Large Sample MSE of the Capon Algorithm

The large sample (L � N ) local error MSE performance of the
Capon signal parameter estimator has been theoretically analyzed
by several authors. Stoica et. al. [11], Vaidyanathan and Buck-
ley (VB) [12], and Hawkes and Nehorai [5] exploit Taylor’s theo-
rem and complex gradient methods to approximate the MSE. VB
provide an additional bias term via a second order Taylor series
expansion that is particularly useful for capturing finite sample ef-
fects and a broader range of values for L and SNR. The results of
VB will be used herein, and the local error MSE approximation
obtained thereby shall be denoted by the symbol σ2

V B(θk).

3. THRESHOLD REGION MSE PREDICTION

This section describes the method of interval errors (MIE) for MSE
prediction and its adaptation to the Capon algorithm. The reader is
also referred to [1, 15] for an excellent description of MIE in the
context of ML estimation.

3.1. Method of Interval Errors

MIE builds upon the two regions of the composite MSE curve of
Figure 1 that are given by the asymptotes of the SNR; namely, the
no information (SNR→ 0) and asymptotic (SNR→ ∞) regions.
Define the conditioning event

A = {True source parameters are θk, k = 1, 2, . . . , K} . (3)

MIE decomposes the MSE expression into two components: “no
interval errors” (NIE), and “interval errors” (IE)

E

j “bθk − θk

”2
˛̨̨̨
A

ff
=

Z
p

bθk

“ bθk = θ0

˛̨̨
A

”
(θ0 − θk)2 dθ0

= Pr (NIE | A) E

j “bθk − θk

”2
˛̨̨̨
NIE,A

ff
+

Pr ( IE | A) E

j “bθk − θk

”2
˛̨̨̨
IE,A

ff
(see equation (127) on p. 282 of [13]). The parameter search space,
i.e. the scanning domain for θ, is divided into disjoint mutually
exclusive intervals based on the characteristics of underlying am-

biguity function ψCapon(θ)
�
= 1

vH (θ)R−1v(θ)
, that depends on R,

and hence is a function of the K SNRs of the K signals present.

3.1.1. Multiple Sources: K ≥ 1

Assume arbitrary K ≥ 1; in addition assume that these K signals
are well separated by at least a beamwidth (thus, negligible like-
lihood of intersource errors). The extension of MIE to multiple
sources is accomplished by expanding the “no interval errors” set
to include all local neighborhoods of the K peaks in the ambiguity
function due to the K sources present (clearly, all other intervals
lead to IE). The large sample MSE approximation obtained via
σ2

V B(θk) will be used to describe the “no interval errors” com-
ponent contribution to the over MSE of the k-th source parameter
Capon estimate.

Let all local maxima within the signal parameter domain of in-
terest of the ambiguity function when evaluated at K large SNRs
(large enough that the ambiguity function has a local maximum
at every true parameter value θk) be given by the finite set M =
{θ | θ1, θ2, . . . , θK+M−1} where θk for k = 1, 2, . . . , K repre-
sent the peaks due to the K sources, and θk for k = K + 1, K +
2, . . . , K + M − 1 represent all other non-source local maxima.1

The total MSE for this Capon parameter estimate can be approxi-
mated by

E

j “bθk − θk

”2
˛̨̨̨
A

ff
�"

1 −
K+M−1X
m=K+1

p
“ bθk = θm

˛̨̨
A

”#
· σ2

V B(θk)

+

K+M−1X
m=K+1

p
“ bθk = θm

˛̨̨
A

”
(θm − θk)2 .

(4)

The interval error probability p
“ bθk = θm

˛̨̨
A

”
represents the like-

lihood of the Capon search algorithm choosing a value associated
with the false peak located at θ = θm as an estimate for θk,
when the K true signals are located at parameter values θ = θk,
k = 1, 2, . . . , K.

As in [1, 15], the dominant term of the Union Bound (UB) can
be used to approximate the interval error probabilities:

p
“ bθk = θm

˛̨̨
A

”
�

Pr [PCapon(θm) > PCapon(θk)| A] .
(5)

This modified UB approximation is remarkably accurate in the
vicinity of the estimation threshold SNR, but tends to over pre-
dict the MSE in the no information region. Thus, the minimum
of (4) and the worse case MSE obtained with an estimate bθk that
is uniformly distributed over the parameter search space will be
chosen as the MSE prediction.

3.2. Capon Pairwise Error Probabilities

The desired pairwise error probabilities are of the form

P Capon
e (θa|θb)

�
= Pr [PCapon(θa) > PCapon(θb)| A] . (6)

Define the following function

F(x, N0)
�
=

xN0

(1 + x)2N0−1

N0−1X
k=0

„
2N0 − 1
k + N0

«
· xk (7)

1Such SNRs will exist provided that no array response mismatch is
present, i.e. provided that the array responses used to compute PCapon(θ)
match the K array responses existing in the true data covariance R for θk ,
k = 1, 2, . . . , K.

II - 218

➡ ➡



where F(x, N0) is the cumulative distribution function for a spe-
cial case of the complex central F statistic. The algorithm for
computing the pairwise error probabilities for the Capon estimator
is as follows:

1. Define the N × 2 matrix V = [v(θa)|v(θb)] and choose
the desired covariance parameter R.

2. Perform the following QR-decomposition

R−1/2V = QH

»
∆2×2

0(N−2)×2

–
; let ∆ = [δ1|δ2]. (8)

3. Define the matrix δ2δ
H
2 + F · δ1δ

H
1 for any non-positive

real number F ≤ 0, and its two eigenvalues as λ1(F ) and
λ2(F ), and their ratio as lλ(F ) = −λ2(F )/λ1(F ).

4. The desired exact pairwise error probability for the Capon
algorithm is given by the expression

P Capon
e (θa|θb) = 0.5 · {1 + sign [λ1(−1)]}
−sign[λ1(−1)] · F [lλ(−1), L − N + 2].

(9)

See [9] for derivation.

4. THE CAPON PROBABILITY OF RESOLUTION

A useful measure of the probability of resolution can be defined
that provides excellent prediction of the SNR at which sources can
be resolved by the Capon algorithm. For a two closely spaced
sources scenario of the form R = RN + σ2

Sa
v(θ0)v

H(θ0) +

σ2
Sb

v(θ0 + δθ)vH(θ0 + δθ), define parameter θMP as the param-
eter value of the source with the smallest power out of the ambi-

guity function, i.e. θMP
�
= arg min

θ0,θ0+δθ
ψCapon(θ). A two point

measure of the probability of resolution can be defined as

P Capon
res (θ0, θ0 + δθ)

�
=

Pr

»
PCapon

„
θ0 +

δθ

2

«
≤ ρ · PCapon(θMP )

–
(10)

where 0 ≤ ρ ≤ 1. The parameter ρ essentially defines the desired
“dip” in Capon output power between two closely spaced sources.
Similar measures of resolution have been proposed [4, 14]. The
algorithm for computing the Capon two point probability of res-
olution is the same as that for P Capon

e (θa|θb) with θa = θMP ,
θb = θ0 + δθ/2, and F = −1/ρ. A discussion of performance
with closely spaced sources utilizing this measure is given in [9].

5. NUMERICAL EXAMPLES

Consider a Direction of Arrival (DOA) estimation scenario involv-
ing a single source and a set of signal bearing snapshots x(l) ∼
CN [0, I + σ2

Sv(θT )vH(θT )], l = 1, 2, . . . , L, for an N = 18
element uniform linear array (ULA) with slightly less than λ/2 el-
ement spacing. The array has a 3dB beamwidth of 7.2 degrees and
the desired target signal is arbitrarily placed at θT = 90 degrees
(array broadside). The signal parameter search space of interest
is defined to be θ ∈ [60◦, 120◦]. The signal parameter to be es-
timated is simply the scalar angle of arrival θ = θT . Figure 2
illustrates the Monte Carlo based MSE performance of the Capon

algorithm alongside its MIE prediction and the Cramér-Rao Bound
(CRB) for sample support cases L = 1.5N, 2N and 3N snap-
shots. The Capon estimator clearly is not asymptotically (L fixed,
SNR→ ∞) efficient, since increasing the SNR does not bring its
MSE performance closer to the CRB, hence the need for analy-
ses such as [11, 12, 5]. The VB MSE prediction is plotted for
the L = 2N case to illustrate that this large sample Taylor Se-
ries based approximation is a local one and is only valid above the
estimation threshold SNR. The goal of MIE is to reasonably pre-
dict MSE performance well into the estimation threshold region.
Note from the L = 2N case in Figure 2 that MIE continues with
accurate prediction well into the threshold region by accounting
for global errors, whereas the VB MSE prediction becomes inac-
curate. For example, the VB prediction is off by about 5dB for
the SNR required for a 6 to 1 beam split ratio (RMSE� −7.5dB).
Note that in the no information region the UB approximation be-
gins to over predict the MSE. Thus, it is allowed to increase until
it maxes at the MSE obtained for an estimate that is uniformly
distributed over the signal parameter domain of interest.

Next consider the same scenario, but with an additional source
of equal power included in the environment at 70 degrees. The
MSE performance of both signal parameter estimates is illustrated
in Figures 3–4. The MIE predictions remain quite accurate.

6. CONCLUSIONS

The method of interval errors (MIE) has been successfully adapted
and extended to the Capon-MVDR algorithm, providing remark-
ably accurate prediction of the MSE threshold SNRs for an arbi-
trary number of well separated sources. These SNRs are predicted
via simple finite sum expressions for the pairwise error probabil-
ities, involving no numerical integration, and circumventing the
need for many time consuming and cumbersome Monte Carlo sim-
ulations. A new two-point measure of the Capon probability of res-
olution was proposed that accurately predicts the SNRs necessary
for mutual source resolvability for sources of arbitrary closeness.
Both represent valuable system design/analysis tools.
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Fig. 2. Single Source Capon MSE Performance, θT = 90◦, L =
1.5N, 2N, 3N
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Fig. 3. Two Source Capon MSE Performance, θ1 = 90◦, θ2 =
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