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ABSTRACT

Two recently published external array self-calibration al-
gorithms are applied to experimental data obtained using a
surveyed 12-element large sparse aperture array operating
at 980 MHz. Though the algorithms are similar in that they
use iterative methods to attempt to estimate the angle-of-
arrival (AOA) of incoming signals with an imperfectly cali-
brated array, they are formulated quite differently. The per-
formances of these algorithms are evaluated through their
ability to reduce spurious peaks in direction finding (DF)
spectra and accurately estimate the AOA of an incoming
signal.

1. INTRODUCTION

Direction finding (DF) algorithms based on eigenstructure
methods (such as MuSIC), utilize an underlying model which
presumes a coherent phase relationship among the antenna
array elements. Such a relationship almost never occurs
in practice due to various antenna effects such as antenna
pattern differences and antenna-to-receiver electrical cable
length differences. Array calibration is required to establish
the coherent phase relationship.

External array calibration is performed to compensate
for array anomalies by attempting to fit the actual array re-
sponse to an assumed theoretical response model. For a
sparse aperture array in which antenna mutual coupling is
not an issue, the fit achieved by applying an appropriate
complex gain to each array antenna is usually sufficient.
Typically, multiple signals with different AOAs in the ar-
ray coverage area are used to derive a single solution for
AOA-independent complex calibration gains.

During the last decade, increasing attention has been
paid to external array calibration in the specific context of
self-calibration algorithms. Self-calibration algorithms can
be formulated for a wide variety of scenarios. The chief
concern of this paper is with situations in which a surveyed
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but imperfectly calibrated antenna array is used to perform
DF on an unsurveyed source. The practical application of
interest is one in which nominal array calibration has been
established and self-calibration is used on signals of oppor-
tunity to update the calibration.

In most published works, the performance of self-cal-
ibration algorithms is evaluated via simulation only [2]-[3].
In this paper, the results of the two recently published self-
calibration algorithms (Flieller [1] and Manikas [2]) are com-
plemented by an examination of their effectiveness on ex-
perimental data described in [4].

This paper is organized as follows. Section 2 describes
the experimental setup used to collect the data. Section 3
summarizes the self-calibration algorithms that are to be ex-
amined. Section 4 presents the results of running the self-
calibration algorithms on the experimental data. Section 5
summarizes the results.

2. EXPERIMENTAL SETUP

The experimental data used for this work was taken at 980
MHz on a 12-element large sparse aperture array, located on
the roof of a four-story garage in Cambridge, MA. The array
configuration is shown in Figure 2(a). The array beamwidth
is approximately 1.37◦. Each calibration source transmit-
ted using a directional horn antenna from a line-of-sight lo-
cation. Though data was collected for calibration sources
with different AOAs, results are provided in this paper for
data collected using the first source only, since similar re-
sults are obtained using the other sources. The location of
the first source relative to the array is shown in Figure 2(b).
To obtain a propagation channel with insignificant multi-
path, the source locations were placed in the near field of
the array. Thus, the calibration algorithms are modified to
accommodate a spherical wavefront.

Prior to conducting the experiment, the array and source
locations were precisely surveyed so that actual AOAs could
be compared to the output of the self-calibration algorithms
for the purpose of performance evaluation. Also, complex
calibration gains were computed using the surveyed sources
and array as described in Section 3 of [4] to establish a nom-
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inally calibrated array response. Then, to evaluate the self-
calibration algorithms, phase errors are introduced to each
element of the nominal response via simulation.

3. SELF-CALIBRATION ALGORITHMS

Both algorithms are evaluated for the situation in which the
array is surveyed with known antenna locations, but signif-
icant calibration errors exist and the source location is not
known. The following are brief interpretations of the self-
calibration algorithms examined.

3.1. Self-Calibration Algorithm of Flieller [1]

This algorithm is similar to the algorithm of Weiss and Fried-
lander [3], except that the regularization term (δ−δN )HΨ−1

(δ− δN ), where δN is the nominal complex gain vector and
Ψ is the corresponding covariance matrix, has been added
to the MuSIC cost function so that it takes on the form of
a MAP estimator. The regularization term increases the ro-
bustness of the algorithm to large perturbations of the com-
plex gains. Optimization of the modified cost function re-
sults in a pair of one-dimensional functions given by

δk =
(
Q(θ) + Ψ−1)−1

Ψ−1δk−1 (1)

fk(θ) = δH
k−1Ψ

−1
(
Ψ − (

Q(θ) + Ψ−1)−1
)

Ψ−1δk−1(2)

where Q(θ)
�
= diag(A(θ))HΠ̂ndiag(A(θ)), A(θ) is the ar-

ray response vector, and Π̂n is the estimated noise subspace
projection. The algorithm iterates between (1) and (2) to ob-
tain updated estimates of the complex gain corrections and
the signal AOA.

3.2. Self-Calibration Algorithm of Manikas [2]

Unlike the algorithms of Flieller and many other authors
whose work often centers around some modification or op-
timization of the MuSIC cost function [1]-[3], the algorithm
in [2] takes the novel approach of formulating the problem
of DF using an uncalibrated array in an H∞ framework.
Based on a state-space equivalent for the conventional array
signal model, results from linear estimation in Krein space
can be used to easily derive an H∞ filter that removes the
“uncertainties” of the array signal model that are otherwise
manifest in the received signal. The H∞ approach results
in a minimization of the worst-case scenario. The algorithm
is initialized with nominal values of the AOA supplied by
an algorithm such as MuSIC. Based on the nominal AOA,
the H∞ filter is constructed, and the received signal is fed
as the filter input. The filter output is then fed back into
MuSIC to update the AOA estimate, and the process repeats
itself. This routine, illustrated in Figure 1, leads in theory to
an improved DF spectrum and hence a more accurate AOA
estimate. However, it does not yield calibration gains, and

is computationally intensive, especially since each iteration
appeals to MuSIC, requiring an eigendecomposition.

Fig. 1. Flow diagram for the Manikas algorithm.

4. EXPERIMENTAL RESULTS

Since the calibration source is in the near field of the ar-
ray for the experimental data, a 2-D MuSIC DF search over
range and azimuth AOA is required. Only the AOA is of
interest here and therefore the range is treated as a nuisance
parameter. An uncalibrated array is simulated from the data
by introducing phase perturbations to each element of the
nominally calibrated array as noted in Section 2.

Figure 3 shows a typical 2-D MuSIC spectrum for the
source, when the calibration gains are subject to phase per-
turbations uniform on [−80◦, 80◦] (the vertical line in each
spectral plot shows the location of the ideal peak). Figure 4
and 5 show the results of applying the Flieller and Manikas
algorithms, respectively, on the data used to generate Fig-
ure 1. It can be seen that while both algorithms significantly
suppress the spurious peaks in Figure 1, the Flieller algo-
rithm clearly does a superior job. Note that the actual spec-
trum magnitude in Figure 4 is substantially larger than the
actual spectrum magnitude of Figures 3 and 5. However,
all MuSIC spectra have been normalized so that the largest
peak has unit magnitude, thus facilitating a direct compari-
son of side-lobe levels between figures.

Figure 6 shows the result of the average of a 50-trials
Monte-Carlo simulation comparing the performance of the
Flieller and Manikas algorithms when the calibration gains
are subject to perturbations uniform on [−θ◦, θ◦]. It can
be seen that the Flieller algorithm consistently yields more
accurate azimuth estimates than the Manikas algorithm. It
should be noted that both of the self-calibration algorithms
begin to fail as the applied phase perturbations continue to
increase towards 180◦. Neither algorithm succeeds on the
experimental data directly without using any nominal cali-
bration. It should also be noted that the data provides a high
signal-to-noise ratio (SNR) test scenario; the receive array
SNR is approximately 40-45 dB.

Although the Manikas algorithm offers no apparent ad-
vantage over the Flieller algorithm and little advantage over
MuSIC (observe that in Figure 6, the azimuth error magni-
tude of MuSIC follows the Manikas algorithm closely) in
high SNR scenarios, it is anticipated that the Manikas H∞
“worst-case” design criterion should provide a performance
advantage in a low SNR environment. To simulate a low
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SNR environment, complex Gaussian white noise with stan-
dard deviation σ is added to the measured data. As shown in
Figure 7, at a sufficiently high background noise level, the
Flieller algorithm starts to exhibit worse performance than
the Manikas algorithm. Note that in Figure 7, MuSIC ex-
hibits performance similar to that of the Manikas algorithm
at high SNR, but starts to resemble the Flieller algorithm
in peformance as the SNR decreases. Figures 8 through
10 depict the dual of Figures 3 through 5 for the low SNR
(σ = 70 V) scenario. It is clear that in the low SNR case, the
Manikas algorithm does a much better job than the Flieller
algorithm in suppressing spurious peaks.

From these experimental results, it is deduced that the
Flieller algorithm offers good performance for practical sce-
narios in which average to high SNR levels exist. The Man-
ikas algorithm is robust in that it has similar performance
across a wide range of SNRs, though its ability to suppress
spurious peaks is more pronounced in low SNR scenarios.
This can be attributed to the H∞ design criterion of the
Manikas algorithm which sacrifices performance in scenar-
ios with average to high SNR levels for improved perfor-
mance in a ”worst-case” low SNR environment.

5. SUMMARY

The ability of two self-calibration algorithms to estimate
the AOA of an unsurveyed source using a surveyed but im-
perfectly calibrated array was evaluated using experimental
data. It was shown that the Flieller algorithm outperforms
the Manikas algorithm for high SNR and also has the advan-
tage of outputting array calibration updates in addition to
AOA estimates. The Manikas algorithm does offer a perfor-
mance advantage in a low SNR environment, as anticipated
from its H∞ design criterion. For practical applications in
which an array is initially calibrated and self-calibration is
employed for calibration updates, high SNR signals of op-
portunity would most likely be used. The Flieller algorithm
would thus be a better match to this application.
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Fig. 2. (a) Array configuration (b) Experimental setup of
calibration source with respect to the array.

Fig. 3. 2-D MuSIC spectrum for source in high SNR envi-
ronment with calibration phase errors on [−80◦, 80◦]

Fig. 4. 2-D MuSIC spectrum for source in high SNR envi-
ronment after application of Flieller algorithm
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Fig. 5. 2-D MuSIC spectrum for source in high SNR envi-
ronment after application of Manikas algorithm
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Fig. 6. Dependence of azimuth error on calibration phase
errors, where calibration phase errors are uniform on
[−θ◦, θ◦]
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Fig. 7. Dependence of azimuth error on background noise
level

Fig. 8. 2-D MuSIC spectrum for source in low SNR envi-
ronment with calibration phase errors on [−80◦, 80◦]

Fig. 9. 2-D MuSIC spectrum for source in low SNR envi-
ronment after application of Flieller algorithm

Fig. 10. 2-D MuSIC spectrum for source in low SNR envi-
ronment after application of Manikas algorithm
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